

Implementation of genomic evaluation for digital dermatitis in Canada

Francesca Malchiodi¹, J. Jamrozik^{1,2}, A. M. Christen³, G. J. Kistemaker², P. G. Sullivan², B. J. Van Doormaal², D. F. Kelton⁴, F. S. Schenkel¹ and F. Miglior^{1,2}

¹CGIL - University of Guelph; ²Canadian Dairy Network, Guelph, Ontario; ³Valacta, Sainte-Anne-De-Bellevue, Quebec, Canada; ⁴POPMED - Veterinary College, University of Guelph

Hoof Lesions

 In Canada, around 25-30% of cows have at least one hoof lesion

- Hoof lesions compromise animal welfare
- Economic loss, costs associated with:
 - Treatment of lesions
 - Decreased cow performance

How to Reduce Incidence of Lesions

Improving management practices at herd level

Through genetic selection

Improving Hoof Health in Canadian Dairy Herds

- Project funded by the **Dairy Research Cluster 2**
 - Dairy Farmers of Canada, Agriculture and Agri-Food Canada, CDN, Canadian Dairy Commission
- Principal investigator: Dr. Filippo Miglior (Canadian Dairy Network & University of Guelph)
- 2014-2017

Objectives

Improve hoof health in Canada

- 1. Centralize data collected by hoof trimmers into a coherent and sustainable national data base
 - Standardize the hoof lesion data
 - Develop a data pipeline: Hoof trimmers CDHI CDN
- 2. Develop a DHI management report for producers
- 3. Develop genomic evaluations for hoof health

Objectives

- Standardize the hoof lesion data collection
- Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

- Develop a DHI management report for producers
- Develop genomic evaluations for hoof health

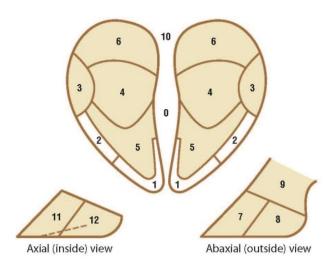
Standardize the hoof lesion data collection Hoof Supervisor System

- Codes of lesion

- Severity
- Claws
- Zones

Standardize the hoof lesion data collection Hoof Supervisor System - Codification

Claw Zones



Code	Lesion Name	Page	Zones
U	Sole Ulcer	4	4
Т	Toe Ulcer	8	1
W	White Line Lesion	12	1,2,3
Н	Sole Hemorrhage	16	4,5,6
F	Foot Rot	19	9
D	Digital Dermatitis	22	9,10
Е	Heel Erosion	25	6
I.	Interdigital Dermatitis	26	0,10
С	Corkscrew Claw	27	7
V	Vertical Fissure	28	7,8
Х	Axial Fissure	29	11,12
G	Horizontal Fissure	32	7,8
Z	Thin Sole	35	4,5
Κ	Interdigital Hyperplasia	37	0
L	Periople Ulcer	39	11

Participation of Hoof Trimmers

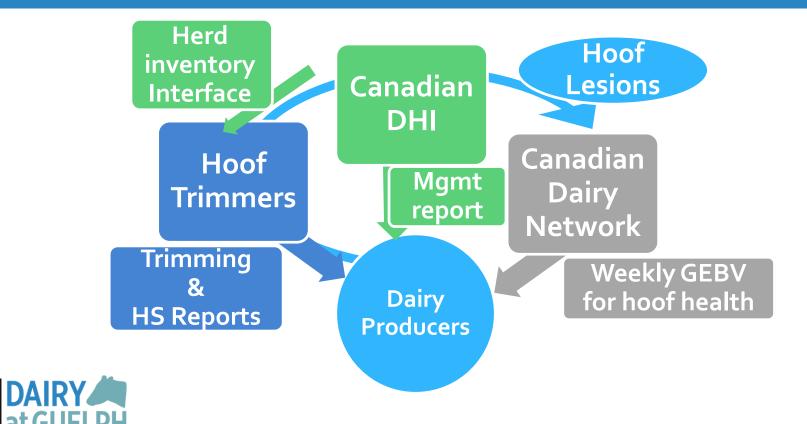
 54 trimmers across Canada now routinely provide hoof health data to Canadian DHI

Additional trimmers invited to participate to the data collection

Objectives

- Standardize the hoof lesion data collection
- Develop a data pipeline Hoof trimmers - Canadian DHI - Canadian Dairy Network
- Develop a DHI management report for producers
- Develop genomic evaluations for hoof health

Data Pipeline



UNIVERSITY #GUELPH

CANADA'S DAIRY UNIVERSIT

Objectives

- Standardize the hoof lesion data collection
- Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

- Develop a DHI management report for producers
- Develop genomic evaluations for hoof health

DHI Management Report

- Working group with hoof trimmers, dairy advisors, veterinarians and researchers
 - To develop a new DHI management report on hoof health
- This report may include
 - Prevalence of lesions on farm
 - Trends over time
 - Benchmarks with province and national averages
- Added value for trimmers and dairy producers

Objectives

- Standardize the hoof lesion data
- Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

- Develop a DHI management report for producers
- Develop genomic evaluations for hoof health

- Historical data from provincial projects up to 2012
- New pipeline data
 - From summer 2015 for Quebec
 - From early 2016 Ontario
 - From mid 2016 for newly recruited trimmers
- Historical data from hoof trimmers

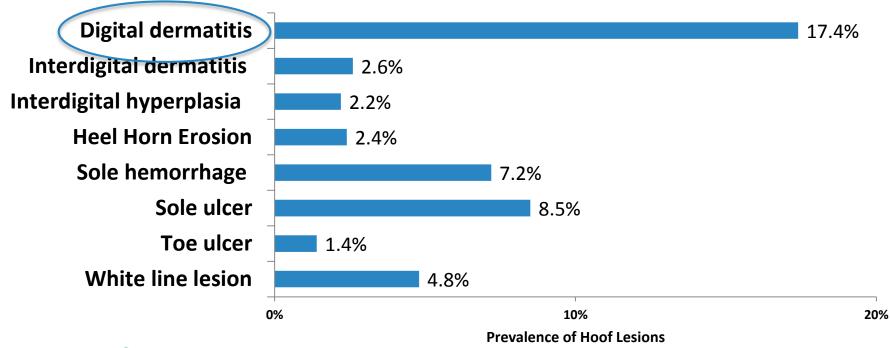
Research Outcomes

- Heritability and Repeatability of hoof lesions
- Effect of pre-selection of cows for trimming
- Correlations with conformation traits
- Severity vs. Binary
- Threshold vs. Linear Model
- Single-step GBLUP

Genetic Evaluation at CDN

Réseau laitier canadien

Prevalence of Hoof Lesions



Digital Dermatitis Holsteins

- 307,172 records
- 127,729 cows
- 8,293 sires
- 332,561- animals in pedigree (4 generations)

Aim is 10-20% of milk recorded cows

Single-step GBLUP

- **Single-trait** (no indicators)
- Animal linear model with repeated observations (0/1)
- Single-step GBLUP using Mix99
- Environmental factors:
 - Herd-Trimming Session
 - Trimmer
 - Days after calving
 - Parity
 - Cow effect (PE)

Single-step Model

- Genetic parameters:
 - Heritability: 0.08
 - Repeatability: 0.20
- Reference population (animals):
 - All genotyped sires and cows that are in the pedigree
- Single-step: **19,459** animals
 - 5,268 sires
 - 7,178 cows
 - 7,013 cows with data

Genetic Evaluation

For bulls only:

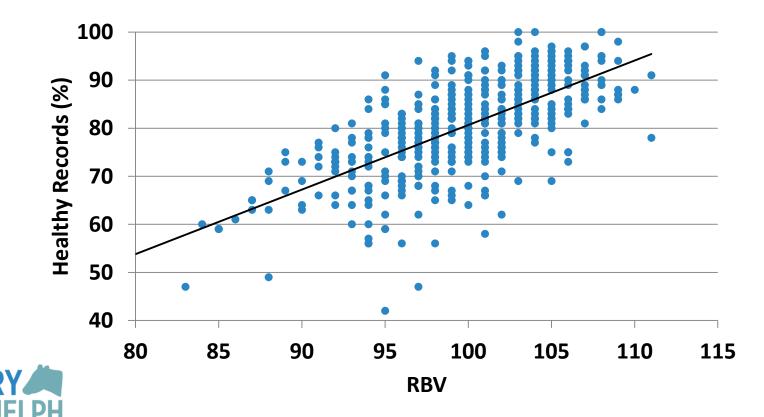
- Genomic Estimated Breeding Values and Reliabilities
- Like all CDN functional traits, evaluations expressed as Relative Breeding Values (RBV):
 - mean = 100 SD = 5 for base sires
 - reversed in sign: higher RBV indicate better resistance to
 Digital Dermatitis

Publication Criteria

• Digital Dermatitis proof of a sire official when:

- Minimum 5 herds
- Minimum reliability of 70%

RBV distribution by % Healthy Records



RBV distribution

Bulls	Proof			% Healthy Records				
	Mean	SD	Min	Max	Mean	SD	Min	Max
Bottom 10	82	2.0	77	84	61	14.1	33	86
Top 10	114	1.7	112	117	93	7.3	80	100

Summary

- Hoof trimmers willing to share data and to develop a standard recording protocol identified across Canada
- Routine flow of hoof lesion data from hoof trimmers to Canadian DHI and to Canadian Dairy Network
- Genomic evaluations for Digital Dermatitis from December 2017
- Soon DHI herd management report for Hoof Health

Acknowledgements

Supported by a contribution from the Dairy Research Cluster Initiative (Dairy Farmers of Canada, Agriculture and Agri-Food Canada, the Canadian Dairy Network and the Canadian Dairy Commission) and by Ontario Genomics

Agriculture and Agri-Food Canada

Canadian Dairy Commission Commission canadienne du lait

Agroalimentaire Canada

Aariculture et

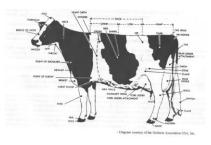
Dairy Research Cluster Dairy Research for a Healthy World.

Ontario Genomics

alact

Links with Conformation Traits

Traits	Rear side rear view	Feet & Legs	Locomotion
Digital Dermatitis	-0.28	-0.24	-0.45



Genetic and Genomic Evaluation of Claw Health

Traits in Spanish Dairy Cattle

N. Charfeddine¹, I. Yánez² & M. A. Pérez-Cabal²

¹ CONAFE, Spanish Holstein Association, 28340 Valdemoro, Spain

² Department of Animal Production, Complutense University of Madrid, 28040 Madrid, Spain

THE GLOBAL STANDARD FOR LIVESTOCK DATA Annual Conference ICAR2018.NZ 7 – 11 February 2018 Aotea Centre Auckland, New Zealand

Why Claw health?

Claw disorders are one of the main causes of involuntary culling in Spanish dairy herds

1.- Fertility

2.- Mastitis

3.- Claw lesions

Claw disorders are responsible for most lameness cases which compromise: Animal Productivity Fertility Welfare √Yield \checkmark Feed and ↑Anestrus period production water access ↓ Conception \downarrow Milk quality **↓**Comfort rate ↑Days open \downarrow Productive life ↗Pain

Feet & legs type traits fail in improving claw health

Interbull Annual Meeting, Auckland, New Zealand 2018

Win-Win Agreement

Claw Health Recording

In 2012 was launched the Spanish program for recording claw health data in order to prevent and to control lameness

- CONAFE provides:
 - A tactile PC-tablet
 - An electronic friendly application called DATPAT
 - An access to the national database
 - Herd reports and animal information
 - Training courses
- Trimmers should:
 - Register at least 2,000 records per year during trimming routine visits.

Objectives

CONARE

- Implementation of a routine genetic evaluation for claw health traits.
- Assessment of the accuracy of genomic proofs for claw disorders in Spanish dairy cattle.

Recorded claw disorders

Seven claw disorders are recorded:

	Prevalence (%)
Dermatitis (DE)	10.07
Sole ulcer (SU)	11.37
White line disease (WL)	8.03
Interdigital hyperplasia (IH)	0.54
Interdigital phlegmon (IP)	0.95
Concave dorsal wall (CD)	1.50
Overall claw disorders	29.91

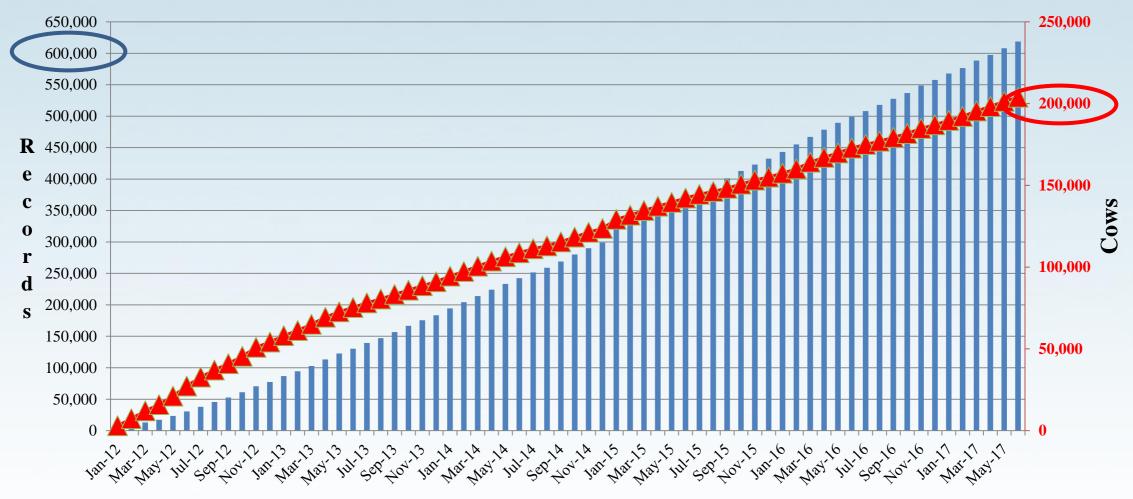
Corkscrew claws (CC) has being recorded since 2017

CD and CC are scored as 0/1

Scoring for each lesion: 0 : Absence 1 : mild 2 : severe

Evolution of Claw data

Records Cows



Data Editing

Initial set of data: 628,228 records from 2012 to 2017 (In 1821 herds by 46 trimmers)

Data selection:

- Records before 2013 were eliminated
- Parity 1 to 5
- Records from day 1 to day 500 after calving
- Only trimmers with at least 2000 records/year
- At herd level: Only herd-year with at least 30% of present cows trimmed

Final set of data: 441,248 records (34 trimmers)

Non trimmed cows were included: **81,228** records

Genetic evaluation: Linear Models

2 multi-trait animal analyses:

- Scenario 1: Only claw disorders
- Scenario 2: Claw disorders and feet and leg type traits
 - Claw disorders
- Herd-year-season

CONAFE

- Lactation-age
- Lactation stage
- Trimmer
- Permanent environmental effect
- Additive animal effect

Type traits

- Herd-visit-classifier
- Lactation-age
- Lactation stage
- Additive animal effect

Mix99 Software

Genomic evaluation: GBLUP with polygenic effect

Reference population: 1,317 bulls

- 2-step evaluation
- Polygenic effect: 30%
- 10-fold cross validation
- Mix99 software

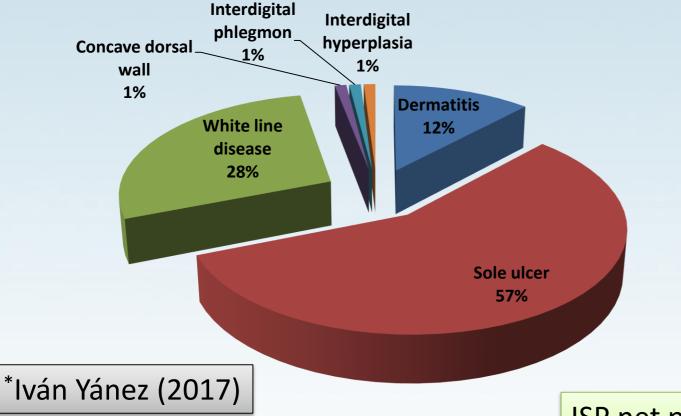
Genetic Parameters

	h²	r
Dermatitis	0.06	0.11
Sole Ulcer	0.06	0.11
White line disease	0.02	0.07
Concave dorsal wall	0.02	0.22
Interdigital phlegmon	0.01	0.03
Interdigital hyperplasia	0.13	0.07

	h²
Feet & legs (F&L)	0.15
Rear legs rear view (RLRV)	0.13
Foot angle (FA)	0.09
Bone quality (BQ)	0.26
Locomotion (LOC)	0.12

	F&L	RLRV	FA	BQ	LOC
Dermatitis	-0.18	-0.20	0.23	-0.09	-0.25
Sole Ulcer	-0.30	-0.10	0.15	-0.15	-0.31
White line disease	-0.24	-0.09	-0.16	-0.30	-0.22
Concave dorsal wall	-0.25	-0.12	-0.12	-0.02	-0.35
Interdigital phlegmon	-0.26	-0.23	-0.11	-0.19	-0.32
Interdigital hyperplasia	-0.11	-0.11	-0.04	-0.08	-0.11

Claw health index: ISP*



Economic weights for claw disorders.				
Claw disorders	€/cow/year			
Dermatitis	- 9.30			
Sole Ulcer	- 44.00			
White line disease	- 37.40			
Concave dorsal wall	- 4.52			
Interdigital phlegmon	- 3.55			
Interdigital hyperplasia	- 1.45			

ISP net profit: 4.10€/cow/year

Proofs reliabilities

Bull with at least 20 daughters in 10 herds with Reliability \geq 50%

Average reliabilities (%)	Scenario 1 Without type traits	Scenario 2 With type traits	Rel gain (%)
Dermatitis	68	74	9%
Sole Ulcer	68	75	10%
White line disease	63	72	14%
Concave dorsal wall	63	68	8%
Interdigital phlegmon	50	66	32%
Interdigital hyperplasia	67	81	22%
ISP	66	74	12%

Correlations between EBVs with and without type traits

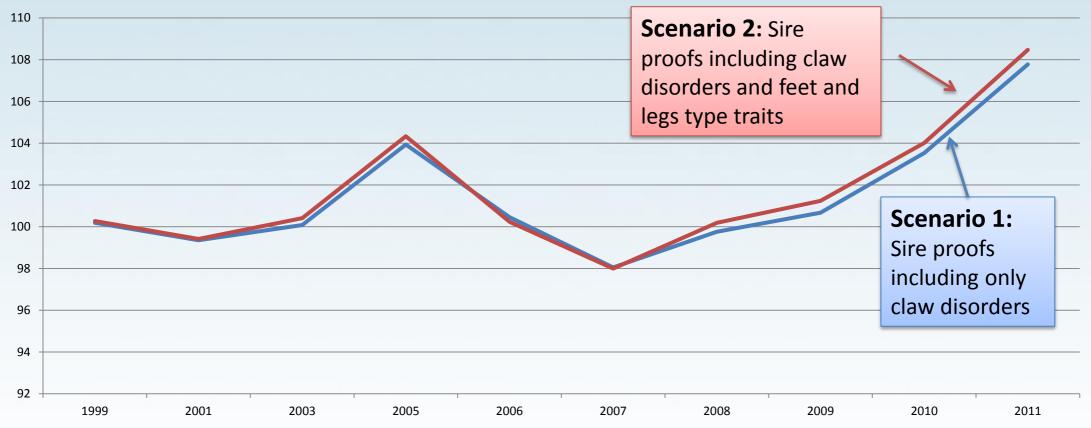
EBVs were standardized to relative breeding values with a mean of 100 and a standard deviation of 10 and reversed in sign

	Pearson correlations	Spearman correlations
Dermatitis	0.98	0.97
Sole Ulcer	0.96	0.96
White line disease	0.91	0.90
Concave dorsal wall	0.92	0.90
Interdigital phlegmon	0.93	0.94
Interdigital hyperplasia	0.96	0.94
ISP	0.97	0.97

CONARE

Genetic Trends

Claw health index: ISP



Validation of Genomic proofs

Results of 10-fold cross-validation

	R ²	b _{VALUE} (S.E.)
Dermatitis	0.19	0.72 (0.11)
Sole Ulcer	0.34	0.99 (0.08)
White line disease	0.27	0.94 (0.10)
Concave dorsal wall	0.35	0.94 (0.08)
Interdigital phlegmon	0.36	1.03 (0.08)
Interdigital hyperplasia	0.15	0.76 (0.15)

Conclusions and Next steps

- Despite the low heritabilities, large genetic variation between best and worst bulls is observed.
- The inclusion of feet and legs type traits in multi-trait analyses increased reliabilities of claw disorders EBVs.
- Accuracy of genomic proofs are low to moderate.

Next Steps:

CONAFE

- March 2018: Interim release for breeding companies
- June 2018: first official release

Grant agreements 4156558 and 4159203 Complutense University of Madrid Spanish Holstein Association

Thanks

FRISONA Española

Estimation of the heritability of a newly developed ketosis risk indicator and the genetic correlations to other traits in three German cattle breeds

<u>H. Hamann¹</u>, A. Werner², L. Dale², P. Herold¹

¹ State Office for Spatial Information and Land Development Baden-Württemberg, Germany ² Association for Performance and Quality Testing Baden-Württemberg, Germany

Goal and derivation of the KetoMIR index:

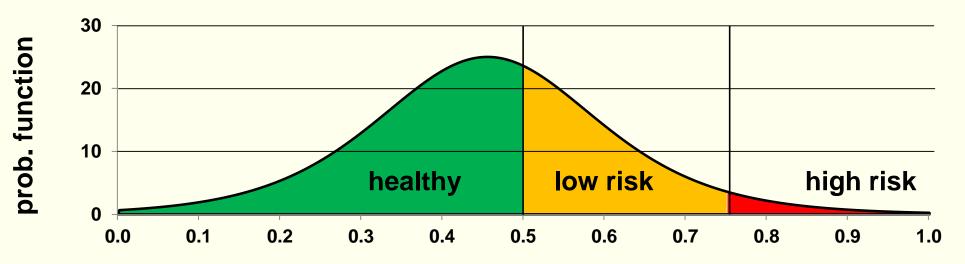
KetoMIR index:

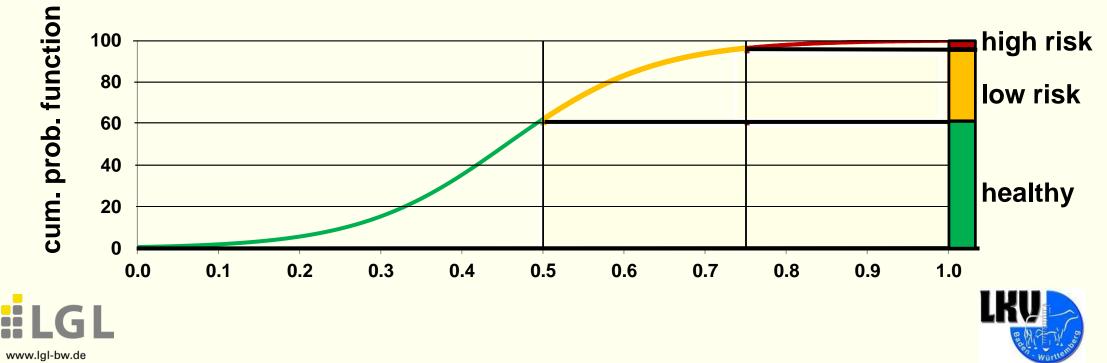
based on logistic regression numeric range between 0 and 1 partition in three classes

"healthy":	0.00	-	0.50
"low risk":	0.50	-	0.75
"high risk":	0.75	-	1.00

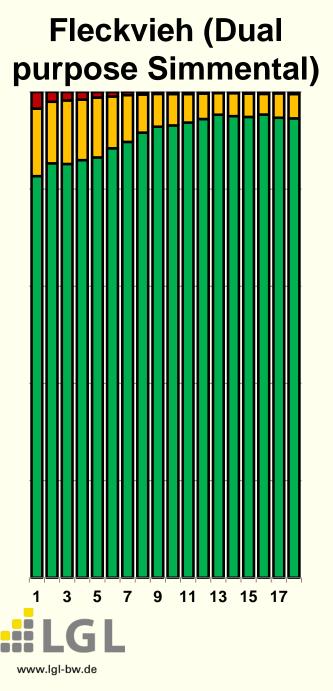
	Calibration set	Validation set
	(n=109.479)	(n=2.966)
Sensitivity:	0.70	0.72
Specificity	0.86	0.84

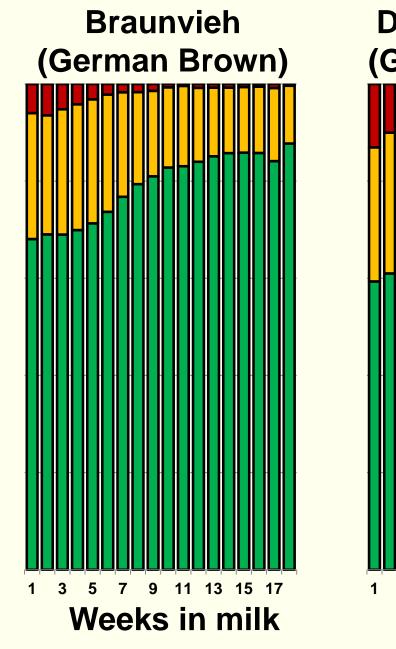
Probability functions of the KetoMIR index and derivaton of KetoMIR classes

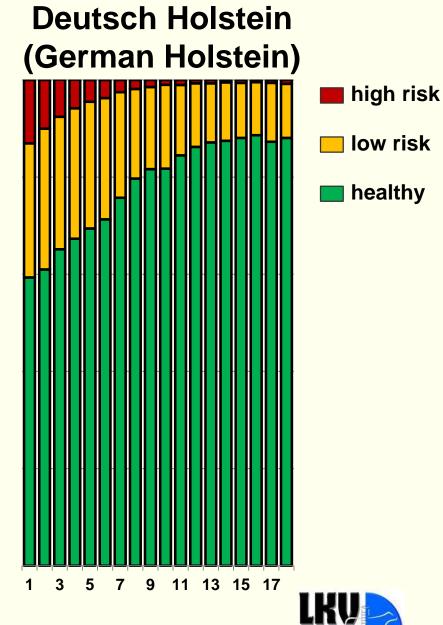




Distribution of KetoMIR classes for breeds and weeks in milk







Breeding strategies:

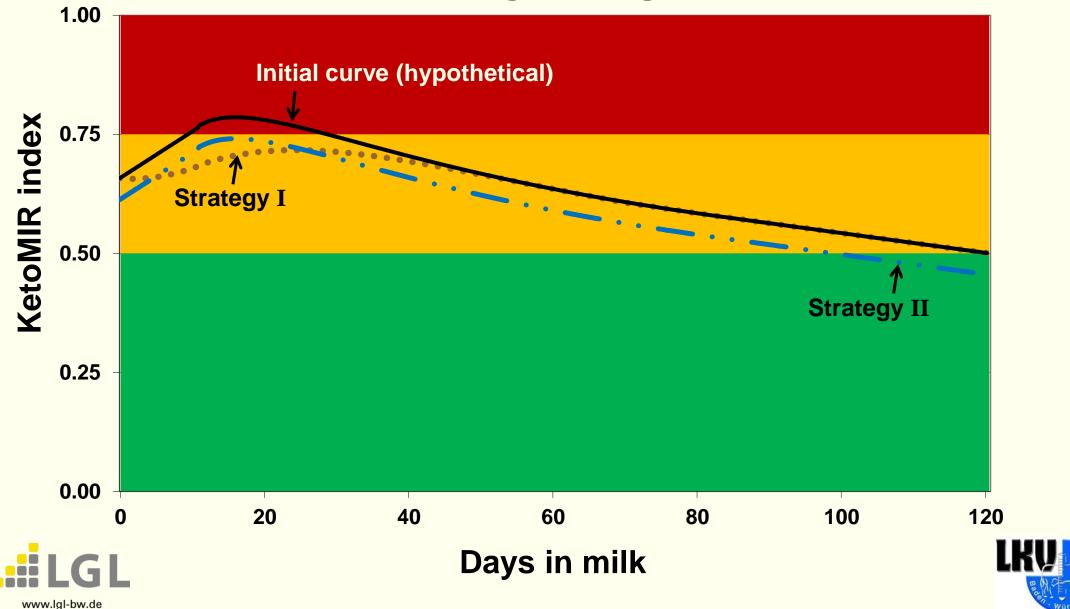
Selection against ketosis liability:

based on a single (first) test day record (strategy I)
 "breaking" the peaks in the KetoMIR curve

- based on the average of several test day records (strategy II)

"lowering" the general level of the KetoMIR curve

Breeding strategies



Data:

Fleckvieh:37.846Braunvieh:15.771Deutsch Holstein:31.425

Repeatability model (within breed):

HYS, lactation number, days in milk, permanent environmental effect, animal effect

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk components

	TD	Fleckvieh	Braunvieh Deuts	sch Holstein
Milleviold	1	0.414	0.525	0.190
	2	0.251	0.354	0.195
Milk yield	3	0.160	0.207	0.274
	Ø	0.276	0.394	0.200
	1	0.412	0.386	0.391
808	2	0.343	0.307	0.279
SCS	3	0.417	0.402	0.266
	Ø	0.401	0.402	0.307

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk components

	TD	Fleckvieh	Braunvieh Deut	sch Holstein
	1	0.024	-0.077	0.002
Fot contont	2	-0.280	-0.416	-0.262
Fat content	3	-0.294	-0.460	-0.339
	Ø	-0.194	-0.370	-0.190
	1	-0.661	-0.765	-0.663
Protein content	2	-0.665	-0.709	-0.718
Frotein content	3	-0.557	-0.613	-0.686
	Ø	-0.630	-0.680	-0.655
	1	0.468	0.463	0.385
Eat protain ratio	2	0.152	0.108	0.187
Fat-protein-ratio	3	0.055	-0.117	0.053
	Ø	0.239	0.143	0.212

Data:

Fleckvieh: Braunvieh: Deutsch Holstein:

37.846
15.771
31.425
lactations with information for the first three test
day records (analysed separately or as average)

Repeatability model (within breed):

HYS, lactation number, days in milk, permanent environmental effect, animal effect

Multitrait model (within breed):

HYS, lactation number, days in milk, animal effect

Heritabilities of the KetoMIR index (multitrait model)

		1. lact.	2. lact.	3. lact.
	Trait	h²	h²	h²
Fleckvieh	1. TD / x. I	0.256	0.264	0.233
	2. TD / x. I	0.197	0.242	0.308
	3. TD / x. I	0.247	0.358	0.332
	Ø / x. L.	0.278	0.353	0.364
Braunvieh	1. TD / x. I	0.176	0.155	0.171
	2. TD / x. I	0.278	0.272	0.332
	3. TD / x. I	0.246	0.318	0.252
	Ø / x. L.	0.289	0.374	0.348
Deutsch-	1. TD / x. l	0.292	0.254	0.201
Holstein	2. TD / x. I	0.371	0.416	0.415
	3. TD / x. l	0.302	0.298	0.263
	Ø / x. L.	0.385	0.351	0.309

Genetic correlations of the KetoMIR index between lactations (multitrait model)

		1. to 2. lact.	1. to 3. lact.	2. to 3. lact.
	Trait	r _g	r _g	r _g
Fleckvieh	1. TD / x. l.	0.790	0.7ँ61	0.994
	2. TD / x. l.	0.978	0.967	0.966
	3. TD / x. l.	0.918	0.962	0.992
	Ø / x. L.	0.921	0.908	0.999
Braunvieh	1. TD / x. l.	0.515	0.556	0.877
	2. TD / x. l.	0.655	0.835	0.903
	3. TD / x. l.	0.935	0.932	0.973
	Ø / x. L.	0.742	0.771	0.948
Deutsch-	1. TD / x. l.	0.819	0.780	0.998
Holstein	2. TD / x. l.	0.893	0.944	0.978
	3. TD / x. l.	0.819	0.861	0.935
	Ø / x. L.	0.836	0.858	0.985

Conclusion:

Data collecting as a matter of the routine milk analyses Genetic background of the KetoMIR index is proven

Mixture of multitrait and repeatability models Decision of a breeding value evaluation for the KetoMIR index

- based on a single test day record

- based on the average of several test day records Applying random regression models to the data

Calculation of economic weights

Thank you for your attention!

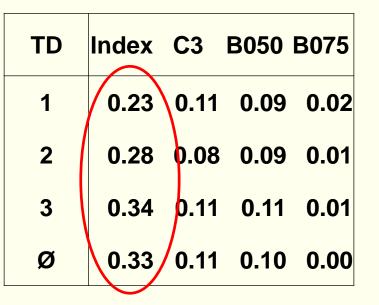
Is the KetoMIR index (classes) heritable?

Heritabilities for the KetoMIR index, catecorical and binary classes

purpose Simmental)					
TD	Index C3 B050 B075				
1	0.22 0.09 0.09 0.02				
2	0.22 0.04 0.05 0.01				
3	0.30 0.04 0.05 0.01				
Ø	0.30 0.08 0.08 0.01				

Fleckvieh (Dual

Braunvieh (German Brown)



Deutsch	Holstein
(German	Holstein)

TD	Index	C3	B050	B075
1	0.24	0.13	0.12	0.04
2	0.28	0.12	0.12	0.02
3	0.39	0.13	0.13	0.01
Ø	0.34	0.15	0.14	0.03

How is the KetoMIR index genetically related to ketosis?

Genetic correlations between ketosis (clinical) and the KetoMIR index and categorical classes

	Fleckvieh		Braunvieh		Deutsch Holstein	
TD	Index	C3	Index	C3	Index	C3
1	1.000	1.000	0.749	1.000	0.438	0.522
2	1.000	1.000	0.376	0.368	0.045	0.122
3	1.000	1.000	0.070	-0.194	0.052	-0.065
Ø	1.000	1.000	0.240	0.153	0.319	0.445

Can the KetoMIR index be used as auxiliary trait in breeding programmes?

- Is the KetoMIR index (classes) heritable?
- How is the KetoMIR index genetically related to ketosis?
- How is the KetoMIR index genetically related to other traits of interest?

Genetic parameters of immune response estimated using genetically divergent lines of Holstein-Friesian dairy heifers

M.D. Price, M.D. Camara, J.R. Bryant, T.M. Grala, S. Meier and C.R. Burke

DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand

Background

- Fertility research herd (Meier et al. 2017)
 - ~540 Holstein-Friesian heifers (2015 born)
 - From assortative mating of high or low fertility parents
- Research aims
 - Underlying physiology driving fertility differences
 - New management strategies
 - New traits to predict fertility ($h^2 = 0.03$)

Immune Response (IR)

Immunity impacts reproductive function

- Immune cells key to successful pregnancy (Fair 2015)
- Post-partum uterine recovery
- Previous IR studies:
 - Heritability (*h*²): 0.16 to 0.64 (Mallard *et al.*, 1983; Wagter *et al.*, 2000; Hernández *et al.*, 2006; Thompson-Crispi *et al.*, 2012)
 - Genetic Correlation (r_g) with fertility: -0.19 to 0.20 (Thompson-Crispi *et al.*, 2012)

Objectives

- Estimate genetic parameters in NZ Holstein-Friesian dairy cattle:
 - IR (3 traits) h^2 and r_g
 - IR r_g with Breeding Worth (BW) index traits
 - In NZ, BW composed of 8 traits (including fertility)
- Account for bias due to herd structure

- 539 Holstein-Friesian heifers
 - Born across 379 herds (June-Sept 2015)
 - From assortative mating of high/low fertility BV parents
 → High & Low fertility heifer lines
- > 7 "Contemporary Groups" (CG)
- Pedigree of 10,992 animals
 - 18 generations deep

Immunization protocol (Thompson-Crispi et al., 2012)

- Immunized at ~220 days old
- AMIR0 \rightarrow Control covariate AMIR14 AMIR21 Response variates Antibody-mediated IR (AMIR)
 - HEWL @ days 0 & 14
 - IgG1 conc. @ days 0, 14 & 21
- Cell-mediated IR (CMIR)

 - *C. albicans*/control @ day 21
 Log skinfold thickness ratio @ day 23
 CMIRc → Control covariate
 CMIRt → Response variate

- > BLUP mixed model:
 - y = CG + control + a + e, $y \in \{AMIR14, AMIR21, CMIRt, nEBV\}$
 - Univariate model $\rightarrow h^2$
 - Bivariate model $\rightarrow r_g$
- Estimated Breeding Values (EBV) of BW:
 - De-regressed (dEBV) by ÷ reliability (Garrick et al. 2009)
 - Noise added (nEBV) from $N(0,\sigma_e^2)$
 - 100 runs with noise re-sampling \rightarrow mean $r_q \pm SE$

- r_g between nEBV and IR also estimated via a Pearson correlation
 - Simple, and used as validation (no SE though)
- > Explored herd divergence in fertility
 - Pedigree determined to be deep enough

Results & Discussion

	AMIR14	AMIR21	CMIRt	
AMIR14	0.44 ± 0.14	0.67 ± 0.17	-0.44 ± 0.43	r_g
AMIR21	0.44 ± 0.04	0.47 ± 0.15	-0.07 ± 0.40	
CMIRt	-0.03 ± 0.05	0.01 ± 0.05	0.11 ± 0.10	
	*			► h ²

Results & Discussion

		AMIR14	AMIR21	CMIRt
BW trait	h²	$r_g \pm SE$	$r_g \pm SE$	$r_g \pm SE$
Protein	0.31	-0.10 ± 0.22	-0.13 ± 0.21	-0.39 ± 0.31
Fat	0.33	-0.22 ± 0.21	-0.10 ± 0.21	-0.24 ± 0.29
Volume	0.36	-0.12 ± 0.20	-0.08 ± 0.20	-0.40 ± 0.32
Liveweight	0.35	-0.15 ± 0.17	-0.22 ± 0.17	*
Fertility	0.03	0.09 ± 0.22	-0.17 ± 0.21	-0.04 ± 0.32
SCS	0.12	0.05 ± 0.25	0.03 ± 0.25	0.10 ± 0.39
RSv	0.04	0.03 ± 0.62	-0.08 ± 0.41	0.17 ± 0.58
BCS	0.19	0.02 ± 0.19	-0.15 ± 0.18	0.19 ± 0.27

Conclusions

- > IR h^2 low/moderate
- > AMIR & CMIR antagonistic

An IR index should have both AMIR & CMIR

- > Weak genetic correlations between IR & BW traits
 - IR unlikely helpful as predictor trait ← including for Fertility
 - Selection on IR or BW unlikely to affect each other
 - Caution however, as r_g generally unfavourable still
- Widespread IR recording impractical

 \rightarrow Genomic selection reference population

Acknowledgements

- Funded by partnership between NZ MBIE and NZ dairy farmers via DairyNZ Inc.
- In-kind support from LIC and CRV Ambreed
- DairyNZ farm & technical staff for data collection
- Dorian Garrick for input to address herd divergence

Materials & Methods

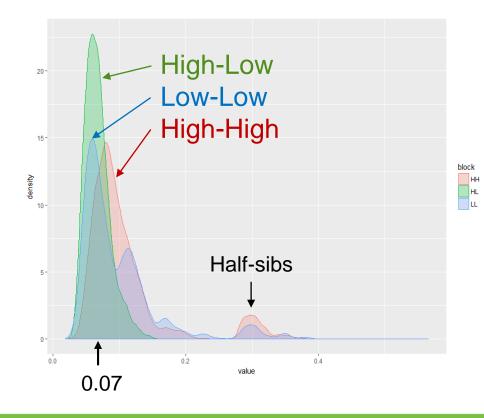
• r_q with EBV verified by Pearson correlation

From IR univar $\sigma_{IR}^2 \times \sigma_{EBV}^2$ Resid. from bivar. *fixed* model; $\sigma_{e}^2 \approx \sigma_{a}^2$ as EBV genetic est.

- SE not available

- Accounting for fertility divergence
 - If divergence between lines present in founders, and
 - If fertility $r_g > 0$ with trait X, then
 - Model for X req. 2 gen. distributions
 - Fertility line term (GG or fixed effect)

Materials & Methods



- Distribution of A-matrix heifer coefficients
 - Apart from sibs, both
 within- & between-line
 ~0.07
 - ∴ pedigree deep enough;1 genetic distribution ok

		AMIR	14	AMIR21		CMIRt	
BW trait	h²	Resampling	Pearson	Resampling	Pearson	Resampling	Pearson
Protein	0.31	-0.10 ± 0.22	-0.05	-0.13 ± 0.21	-0.06	-0.39 ± 0.31	-0.05
Fat	0.33	-0.22 ± 0.21	-0.15	-0.10 ± 0.21	-0.03	-0.24 ± 0.29	0.05
Volume	0.36	-0.12 ± 0.20	0.00	-0.08 ± 0.20	0.02	-0.40 ± 0.32	-0.08
Liveweight	0.35	-0.15 ± 0.17	-0.16	-0.22 ± 0.17	-0.18	*	0.33
Fertility	0.03	0.09 ± 0.22	0.10	-0.17 ± 0.21	-0.05	-0.04 ± 0.32	-0.07
SCS	0.12	0.05 ± 0.25	-0.01	0.03 ± 0.25	-0.03	0.10 ± 0.39	0.06
RSv	0.04	0.03 ± 0.62	-0.01	-0.08 ± 0.41	-0.01	0.17 ± 0.58	0.19
BCS	0.19	0.02 ± 0.19	0.05	-0.15 ± 0.18	-0.09	0.19 ± 0.27	0.08

Improved genetic evaluation of health traits using metabolic biomarkers in Nordic dairy cattle

E. Rius-Vilarrasa¹, W.F. Fikse¹, E. Carlén¹, J-Å. Eriksson¹, J. Pöso², U.S. Nielsen³, G. P. Aamand⁴

¹ Växa Sverige, Uppsala, Sweden
 ² Faba co-op, Vantaa, Finland
 ³ SEGES, Aarhus N, Denmark
 ⁴ Nordic Cattle Genetic Evaluation, Aarhus N, Denmark

Interbull meeting 2018, New Zealand

Health traits evaluations

UDDER HEALTH

Clinical mastitis, Cell count (indicator trait) Udder conformation (indicator traits)

CLAW HEALTH Claw diseases (trimmers)

GENERAL HEALTH

Reproductive-, Metabolic disorders, Feet and Leg problems -- Clinical mastitis, metabolic biomarkers (BHB & Acetone indicator traits)

Health traits evaluations

UDDER HEALTH

Clinical mastitis, Cell count (indicator trait) Udder conformation (indicator traits)

CLAW HEALTH Claw diseases (trimmers)

GENERAL HEALTH

Reproductive-, Metabolic disorders, Feet and Leg problems -- Clinical mastitis, *metabolic biomarkers (BHB & Acetone indicator traits)*

General Health index

<u>GH index</u> = Early Reproductive Disorders (ERP) + Late Reproductive Disorders (LRP) + Feet & Leg Problems (FLP) + Ketosis (KET) + Other Metabolic Disorders (OMB)

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

General Health index

GH index	Early Reproductive Disorders (ERP)
	+ Late Reproductive Disorders (LRP)
	+ Feet & Leg Problems (FLP)
Metabolic	+ Ketosis (KET)
Disorders	+ Other Metabolic Disorders (OMB)

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

General Health index

<u>GH index</u> = Early Reproductive Disorders (ERP) + Late Reproductive Disorders (LRP) + Feet & Leg Problems (FLP) + Ketosis (KET) + Other Metabolic Disorders (OMB)

Metabolic Biomarkers - New indicator traits

Metabolic Biomarkers

Ketone bodies detectable in milk samples:

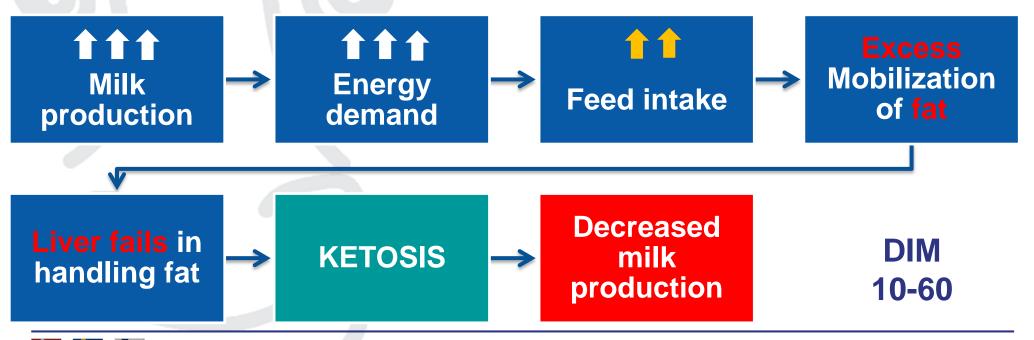
β-hydroxybutyrate (BHB) & Acetone

ΝΑν

Metabolic Biomarkers

Ketone bodies detectable in milk samples:

β-hydroxybutyrate (BHB) & Acetone



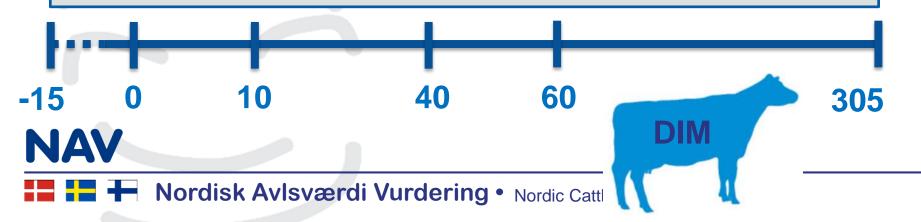
Data – Disease traits

- Treatment records since the 80's
- Veterinarians, AI technicians and Farmers
- Breeds: Holstein, Jersey and Red Dairy Cattle (RDC)
- Lactations 1-3
- Defined as binary 0/1 trait

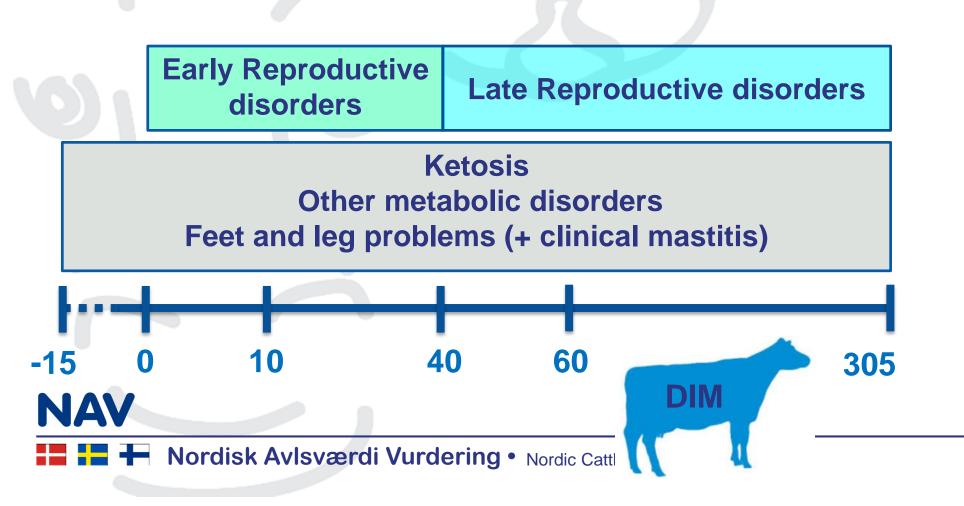
Data - BHB and Acetone

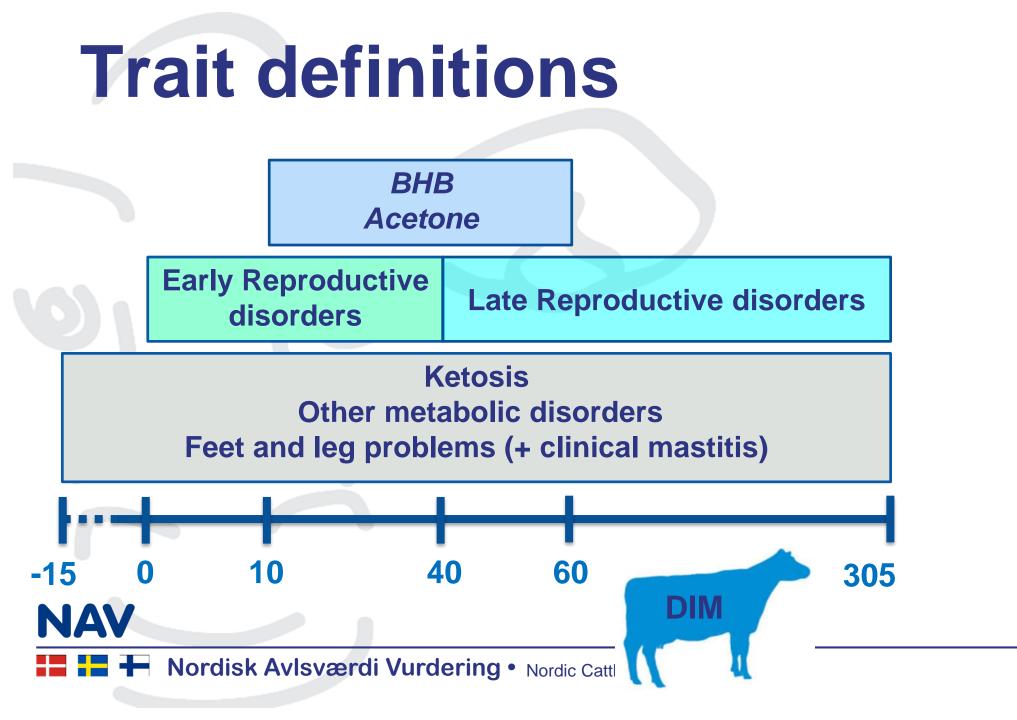
- Since 2013 Denmark
- From 2018 Finland and Sweden
- Routine predictions from milk samples collected within the milk recording scheme – mmol/L

Trait definitions



Trait definitions





Model - Multi-trait multi-lactation animal model

Fixed effects

Herd-year * country Calving age * country Year-month calving * country Random effects

Animal

NAV

(fixed) Regression

Lactation stage (only BHB/Acetone)

Breeds and heterosis (only HOL)

Cow Permanent environmental effect (only BHB/Acetone)

**Pre-adjustment for heterogeneous variance

	Early reproductive disorders	Late reproductive disorders	Other metabolic disorders	Ketosis	Feet and leg problems
Early reproductive disorders	0.020	0.40	0.40	0.29	0.35
Late reproductive disorders		0.010	0.29	0.21	0.36
Other metabolic disorders			0.006	0.74	0.38
Ketosis				0.012	0.19
Feet and leg problems					0.010

Low heritabilities & low, moderate to high genetic correlations

	Early reproductive disorders	Late reproductive disorders	Other metabolic disorders	Ketosis	Feet and leg problems
Early reproductive disorders	0.020	0.40	0.40	0.29	0.35
Late reproductive disorders		0.010	0.29	0.21	0.36
Other metabolic disorders			0.006	0.74	0.38
Ketosis				0.012	0.19
Feet and leg problems					0.010

Low heritabilities & low, moderate to high genetic correlations

	Other metabolic disorders	Ketosis	BHB	Acetone
Other metabolic disorders	0.006	0.74	0.48	0.65
Ketosis		0.012	0.65	0.76
BHB			0.15	0.88
Acetone				0.06

Low to moderate heritabilities & high genetic correlations

	Other metabolic disorders	Ketosis	BHB	Acetone
Other metabolic disorders	0.006	0.74	0.48	0.65
Ketosis		0.012	0.65	0.76
BHB			0.15	0.88
Acetone				0.06

Low to moderate heritabilities & high genetic correlations

	Other metabolic disorders	Ketosis	BHB	Acetone
Other metabolic disorders	0.006	0.74	0.48	0.65
Ketosis		0.012	0.65	0.76
BHB			0.15	0.88
Acetone				0.06

Low to moderate heritabilities & high genetic correlations

Value of including BHB & acetone

Reliabilities for cows with or without BHB and Acetone observations, that have veterinary treatment observations but not own progeny

Breed	BHB & Acetone obs	Other Metabolic disorders	Ketosis	GH index
HOL	Yes	0.34 15%	0.36 19%	0.32
	No	0.29	0.29	0.32 6%

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

- New objective indicator traits for Ketosis in the General Health evaluation
 - Diagnosis for subclinical and clinical ketosis

- New objective indicator traits for Ketosis in the General Health evaluation
 - Diagnosis for subclinical and clinical ketosis
- Metabolic biomarkers showed favorable and high genetic correlations with Ketosis

- New objective indicator traits for Ketosis in the General Health evaluation
 - Diagnosis for subclinical and clinical ketosis
- Metabolic biomarkers showed favorable and high genetic correlations with Ketosis
- Higher heritability of BHB and acetone than for Ketosis

- New objective indicator traits for Ketosis in the General Health evaluation
 - Diagnosis for subclinical and clinical ketosis
- Metabolic biomarkers showed favorable and high genetic correlations with Ketosis
- Higher heritability of BHB and acetone than for Ketosis
- The inclusion of the metabolic biomarkers increases cow EBV reliability, especially for ketosis and metabolic disorders

NAV

 The new General Health evaluation was introduced November 2017 for all breeds (Holstein, RDC and Jersey)

November 2017

Disease traits and sub-traits used in the GH evaluation

	Early reproductive disorders	Late reproductive disorders	Ketosis	Other metabolic diseases	Feet and leg problems
	 Retained placenta 	 Hormonal reproductive disorders 	 Ketosis BHB 	Milk feverOther	 Feet and legs disorders
	Hormonal reproductive disorders	 Infective reproductive 	 BnB (β-hydroxybutyrate) Acetone 	metabolic diseases	uisoideis
•	Infective reproductive disorders	 disorders Other reproductive 		Other feed related disorders	
	Other reproductive disorders	disorders		 Other diseases 	

Disease frequencies in % - HOLSTEIN

Traits	DNK	SWE	FIN
ERP	12	2	3
LRP	4	8	13
KET	5	<1	2
OMB	2-9*	1-7	2-8
F&L	8	3	2

*Lactation 1 to lactation 3

Disease frequencies in % - RDC

Traits	DNK	SWE	FIN
ERP	8	2	3
LRP	2	6	12
KET	1-4*	<1	1
OMB	1-7	1-5	1-6
F&L	7	2	2

*Lactation 1 to lactation 3

Disease frequencies in % - Jersey

Traits	DNK	
ERP	3	R
LRP	2-3*	
KET	2-3	
OMB	2-15	
F&L	5-7	

*Lactation 1 to lactation 3

THE GLOBAL STANDARD
FOR LIVESTOCK DATA7 - 11 February 2018
Aotea CentreAnnual Conference
ICAR2018.NZAuckland,
New Zealand

Alternative use of Somatic Cells Counts in genetic selection for mastitis resistance: a new selection index for Italian Holstein breed

R. Finocchiaro¹, G. Visentin¹, M. Penasa², J.B.C.H.M. van Kaam¹, M. Marusi¹, G. Civati¹ & M. Cassandro²

¹ANAFI - Italian Holstein Association ² DAFNAE - University of Padova

CONTEXT

- Mastitis is one of the major diseases in dairy herds
- It induces economic costs for breeders mainly due to worsening of milk yield, milk quality and increase of health care cost
- Somatic cell count (SCC) is an indicator of both resistance and susceptibility of cows to intramammary infections

IDENTIFICATION OF MASTITIS

- ✓ DIRECT MEASURES corresponding to the diagnosis of inflammation with a positive bacteriological examination and observation of clinical cases
 - Accurate
 - Repeated and expensive tests on a large scale

- ✓ INDIRECT MEASURES linked with inflammation of the udder
 - Somatic Cell Count (SCC)
 - Electrical conductivity of milk
 - Cell differentiation (e.g. lymphocyte, macrophages and
 - polymorphonuclear neutrophils)

MASTITIS RECORDING SYSTEM

- Mastitis is not widely implemented in disease-recording systems in many countries
- Lactation-mean SCC or test-day SCC are generally used as indirect mastitis indicators
- Other traits derived from SCC have been suggested as alternatives to improve/implement genetic evaluations for mastitis resistance, such as :
 - maximum SCC
 - standard deviation of SCS
 - SCC peaks pattern

WHAT HAPPENS IN THE WORLD

...INTERBULL DATA...and udder health data

- Two type of EBVs are considered by Interbull:
 - Somatic cell score (SCS)

- Udder health (MAS) \longrightarrow as trait
 - when missing same as SCS field
- In total 29 countries send SCS info
 - Only 5 countries provide udder health (MAS) info (Canada, Scandinavian countries, France, The Netherlands and Italy)

WHAT HAPPENS IN THE WORLD

Country	Udder health index	h ² «Udder health index»	h² «Clinical Mastitis»
	0,25*CM ₁₁ +0,25*CM ₁₂ +		
DFS	0,30*CM ₂ +0,20*CM ₃	6%	3 - 7%
France	o,6o*SCS + 0,40*CM	15%	2%
The Netherlands	o,40*SCM+o,60*CM	9%	6%
Canada	¹ / ₃ CM ₁ + ¹ / ₃ CM ₂ + ¹ / ₃ SCS	15%	3 - 5%
Italy	Predicted traits for CM	15%	3%

CM=clinical mastitis; SCS=Somatic Cell Score; SCM=Sub-Clinical Mastitis

AIM

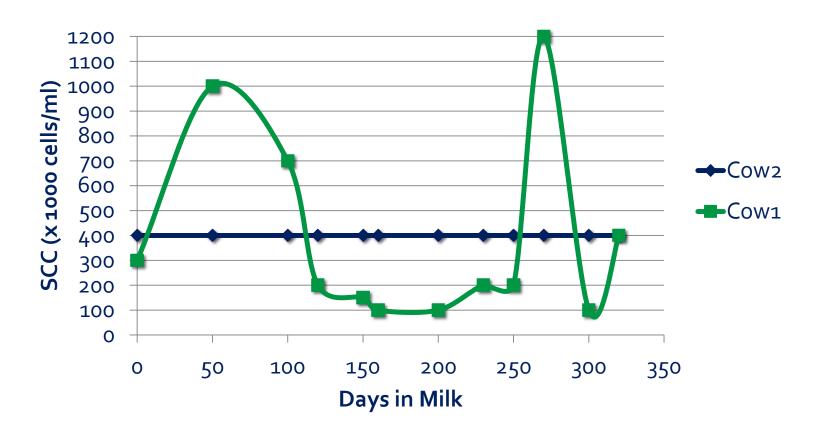
Setup a new Udder Health Index for Mastitis Resistance using indicators derived from SCC test-day

SCC PATTERN EXAMPLE

.....It's important to realize the trend of cells during lactation...

Constant (Cow 2)

Fluctuating (Cow 1)



DATA-EDITING

- Only first parity cows (for the moment)
- Cows with at least 3 TDscc records,
- Cows with $1^{st}TD \leq 60$ days after calving
- CowsTDs interval \leq 70 days

Within lactation SCC patterns have been defined:

- L = "Low" (< 100,000 SCC/mL)
- | = "Intermediate" (100,000-400,000 SCC/mL)
- **H** = "High" (> 400,000 SCC/mL)
- Several samples distributed in the population were analyzed in order to get an idea of trend repeatability

STEP 1: NOVEL TRAITS DEFINED TO CAPTURE DIFFERENT ASPECTS OF MASTITIS

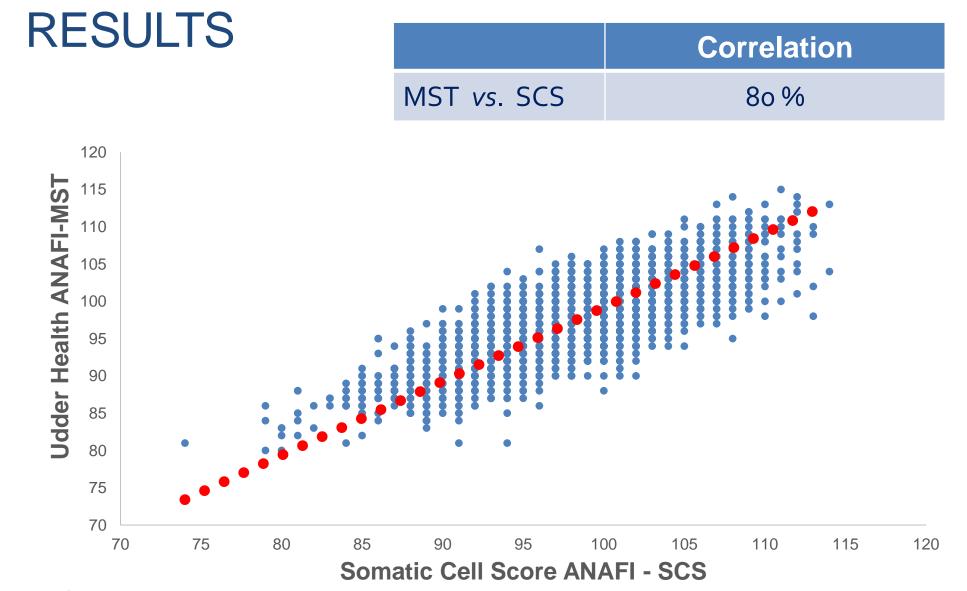
TRAIT	Description
SCS ₁₅₀	Average SCS from 5 to 150 days of lactation
SCS ₁₅₁₋₃₀₅	Average SCS from 151 to 305 days of lactation
SCS _{TOTAL}	Average SCS in the entire lactation
INFECTION	(0/1): 1 = cow with at least 1 TD identified as I or H within lactation
SCS_SD	SCS Standard deviation within lactation
SEVERITY of infection (%)	Ratio between n°TD H and the total n° of TD within lactation
РЕАК	Presence of peaks L-H-L or L-H-H within lactation
	o = no peaks 1 = at least one of the two peaks

STEP 2: VALIDATION ON REAL DATA

- Once indicators traits have been defined, these have been validated on a "robust" sample data-set well distributed in the Italian territory with direct mastitis information
- Those with the strongest genetic correlation with clinical mastitis have been retained.
- The new udder health index (MST) was built following selection index theory in order to estimate appropriate weights to combine the alternative traits in the MST aggregate udder health index

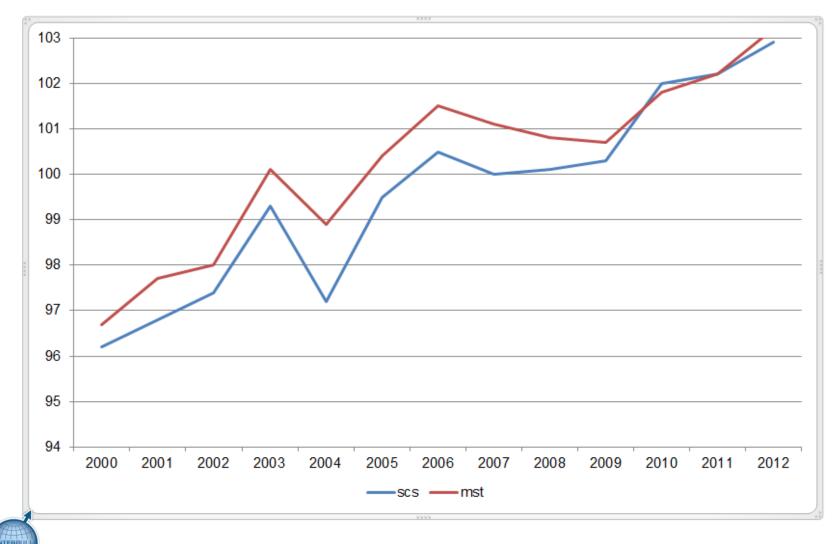
RESULTS

Trait	Mean	SD	h²	r _g
Clinical mastitis	0,09	0,28	0,03	
SCS150	2,58	1,37	0,06	0,39
SD_SCSt	1,20	0,62	0,02	0,44
Severity of infection	0,11	0,19	0,07	0,41
Peaks pattern	0,10	0,31	0,02	0,51



BULLS GENETIC TREND

ANAFI



CONCLUSIONS

- The new index (MST) **DOES NOT REPLACE** the current SCS Index but it is **a new tool** to select DIRECTLY for clinical mastitis
- This index has been published for the first time during December 2017 evaluation with mean 100 and standard deviation 5.
- Initially this index will be published only for national and international bulls (**no genomics**).
- Currently only first parity cows

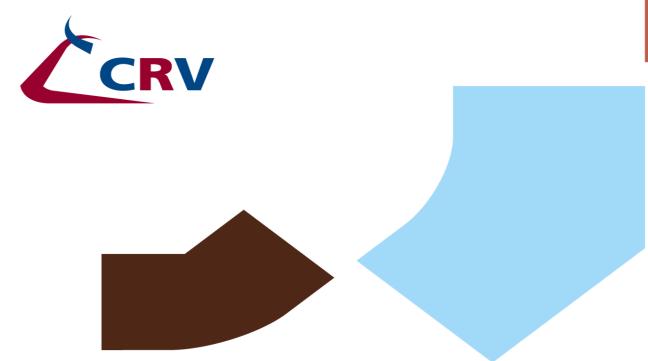
FUTURE PERSPECTIVES

• Pluriparous cows and Genomic evaluation \rightarrow gMace

Increase mastitis data-set

• Use of differential cells? \rightarrow Combine all new info

THANKS FOR YOUR ATTENTION!



Breeding for resistance against Paratuberculosis: Genetic relation between antibody response and faecal shedding of MAP in dairy cattle

L.C.M. de Haer, M.F. Weber, G. de Jong

CRV and GD Animal Health; The Netherlands

What is Paratuberculosis?

Paratuberculosis is a chronic intestinal infection of ruminants caused by Mycobacterium avium ssp. Paratuberculosis (MAP).

Infections will develop slowly into:

- chronic intractable diarrhea
- weight loss
- production losses
- low birth weight of calves
- ultimately death since no treatment is available

Economical importance

In The Netherlands in 2008:

47% of farms had at least one positive animal 2.4% of all animals was positive

Economical loss:

770,- euro/year per herd (50 animals) with infected cows

For every animal that develops clinical signs

- there will be 7 to 10 animals excreting
- there will be a further 7 to 10 infected, but not yet excreting (possibly excreting in the future)

Is breeding against Paratbc possible?

- Goal is reduction of faecal shedding of MAP
- Tool is antibody response in milk
- -> Are genetic variations of antibody levels and faecal excretion present?
- -> Is a lower antibody level in milk related to less faecal shedding?

Data

Causative agent of paratuberculosis: Mycobacterium avium ssp. Paratuberculosis (MAP)

Two data sets:

- 1) Individual milk samples tested by Elisa for antibodies against MAP (trait=PA1)
- Individual faecal samples tested for MAP bacteria (trait=PA2)

Method

- Estimation of genetic parameters for PA1 and PA2
- Estimation of genetic correlation between breeding values for PA1 and PA2

Results: genetic effects

	PA1	PA2
σ_{g}^{2}	0.004	0.005
σ^2_{g} σ^2_{perm}	0.033	0.021
σ_{p}^{2}	0.081	0.081
repeatability	0.42 (0.003)	0.28 (0.006)
h ²	0.05 (0.003)	0.06 (0.008)

Heritability and genetic variation indicate possibilities for selection.

Genetic correlation

- Genetic correlation between breeding values estimated with milk (PA1) and faecal (PA2) analyses
- Genetic correlation was estimated, accounting for differences in repeatability of breeding values (MACE)
- Sires have at least 15 daughters
- Genetic correlation PA1-PA2: 0.81

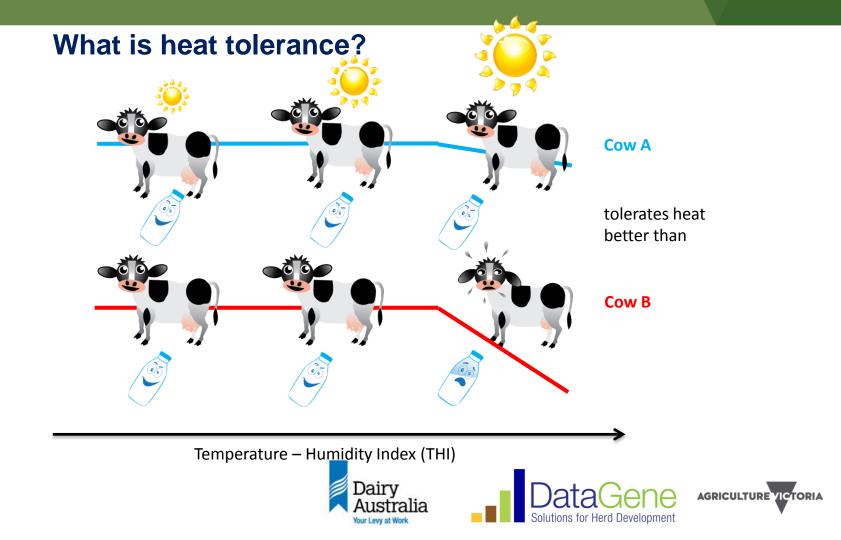
Implications

- Genetic standard deviation for ELISA test (antibody levels): 0.063
- Increase in breeding value means decrease in antibody levels
- Using a bull with 1 genetic standard deviation higher breeding value: 2.8% less daughters tested positive

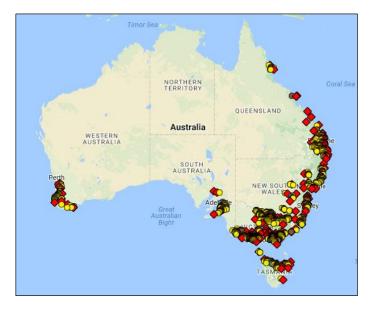
Economic Development, Jobs, Transport and Resources

Heat Tolerance ABV

T. Nguyen, J.E. Pryce, LA Monks and M.M Axford



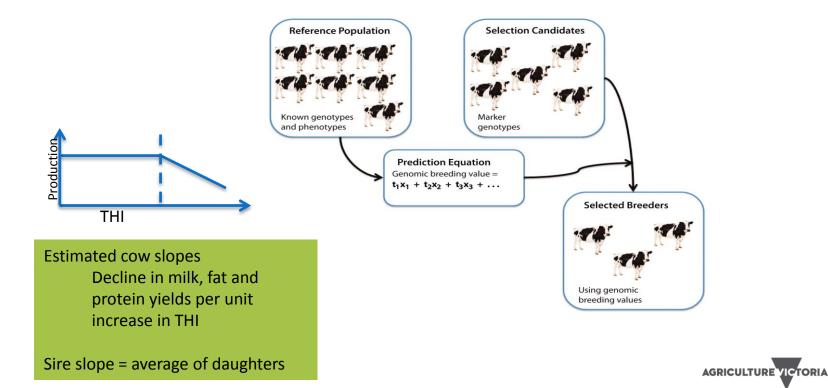
How to estimate genomic breeding value for heat tolerance?



Dairy

Australia

How to estimate genomic breeding value for heat tolerance?

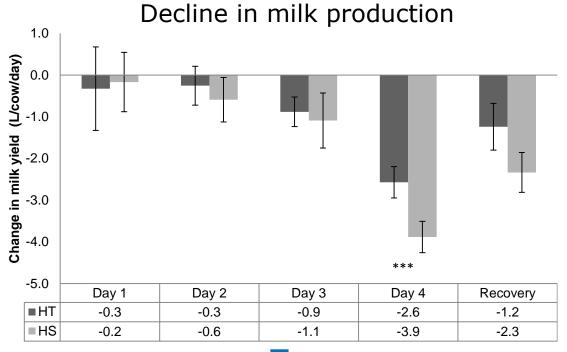


Heat tolerance ABVg reliability: Average 38% in Holsteins and Jerseys

Validation experiment

- 400 heifers screened
- 24 predicted most heat tolerant, 24 predicted most susceptible selected on GEBV
- Run through a simulated heat wave event at Ellinbank
- 4 day event, measure milk production, core temperature

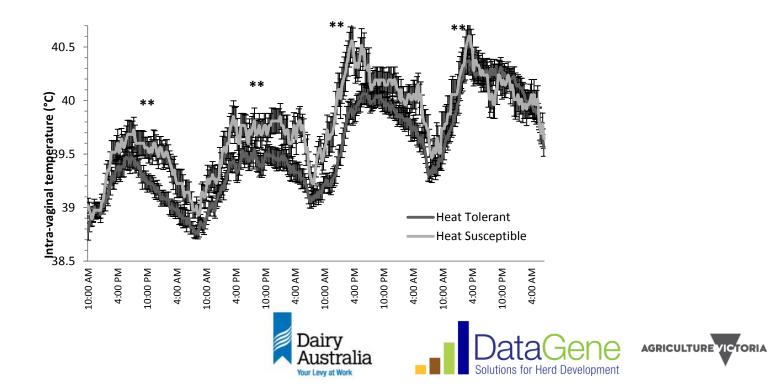
Validation experiment



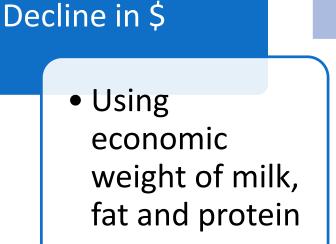
AGRICULTURE VICTORIA

Validation experiment

Difference in intra-vaginal temperature



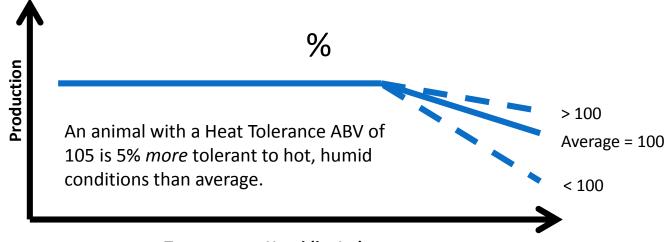
Expression of heat tolerance ABVg



Standardise

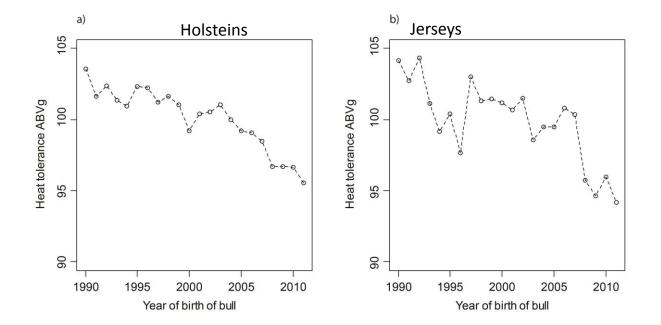
- Mean =100
- Standard deviation = 5

Heat tolerance ABVg



Temperature-Humidity Index

Genetic trend (decline ~1.5 SD in 20 years)



Economic Development, Jobs, Transport and Resources

Cool cows toolbox

Advice to farmers

- Choose bulls from the Good Bulls Guide
- If Heat Tolerance is important, select above average bulls

Il Telstra Wi-Fi Call	🗢 8:36 pm	7 0	* 💼
\leftarrow	230 Bulls		
Breed Index	Heat Tolerance	Add filter +	
BULL		👻 BPI	Heat
7H011395 S-S-I SHAMROCI	K MYSTIC	337	101
29H017732 DE SU 11949 PEN	JALTY	310	102
SUPERDUDE GLOMAR SUPERS	SIRE 1667-ET	307	102
29H017387 RELOUGH DIREC	TIVE	307	102
MURCIELAGO CO-OP AARDEM	A MURCIELAGO	305	101
011H011505 EDG ALTAGEFFEI	N-ET	302	105
CRVEASTON PEAK EASTON		296	101
٩	公		
Search Bulls	Shortlists	More	

What did farmers say?

Trevor Parrish, New South Wales

"Now when I get a list of bulls I'm going to be looking for bulls which combine increased production and increased heat tolerance – they are going to be the ones who buck the trend."

Ray Kitchen, Boyanup, Western Australia

"Having a Heat Tolerance ABV will mean we can breed cows with a greater ability to tolerate hot weather, be better suited to our farming environment.

"We will be looking for the bulls that pull together production and heat tolerance."

Shane Gardiner, Mt Gambier South Australia

"Heat Tolerance is something we can breed in our cows for free so why not? Like all genetic traits, it will be permanent and cumulative."

Ross Gordon, Cohuna, Victoria

"If two bulls have the same BPI but one has better heat tolerance than that's the one we will be selecting"

Ian Scott, Nanango, Queensland

"We can send a man to the moon but we can't control the weather so we need to do everything possible to make things better for the cows, which includes breeding cows with good heat tolerance."

Key messages

- The Heat Tolerance ABV identifies animals with greater ability to tolerate hot, humid conditions with less impact on milk production
- Released in December 2017

- Validated in research conditions
- The Heat Tolerance ABV is unfavourably correlated with production but there are high Balanced Performance Index bulls that are also above average for Heat Tolerance

Economic Developmer Jobs, Transport and Resources

Thank you!

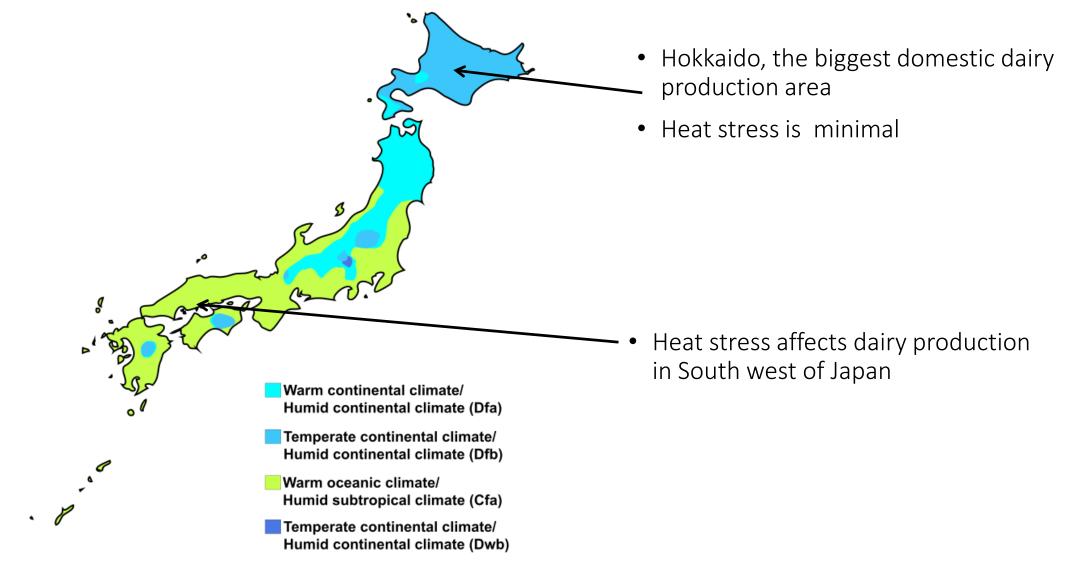
Australian Government Department of Agriculture

AGRICULTURE VICTORIA

Economic Developmen Jobs, Transport and Resources Effect of heat stress on production traits of Holstein cattle in Japan: parameter estimation using test day records of first parity and genome wide markers

Y. Atagi¹, A. Onogi¹, T. Osawa², T. Yasumori³, K. Adachi³, S. Yamaguchi³, M. Aihara³, H. Goto³, K. Togashi³ and H. Iwata¹
1 The University of Tokyo, Japan
2 National Livestock Breeding Centre, Japan
3 Livestock Improvement Association of Japan, Inc., Japan

Japan map of Köppen climate classification



From Wikipedia on 8Feb, 2018

Record processing

- phenotypes (Apr1987-Nov2015)
 - in 233 dairy farms with genotyped cows
- genotype
 - impute 20,411 cow LD records using Beagle 3
 - with 50K records (2849 bulls and 2598 cows)
- farms were linked with meteorological offices based on their areas for the announcement of weather forecasts
- calculate Temperature-Humidity Index (THI) at meteorological offices

 $THI = (1.8 \times T_d + 32) - (0.55 - 0.0055 \times RH) \times (1.8 \times T_d - 26)$

T_d: dry bulb temperature (Celsius), *RH* : relative humidity (%)

- each phenotype was linked to the average (THI) up to 4 days before test day
- Heat stress
 - defined as decreased production at THI > 60

Summary of records

Traits	Chip used for genotyping	Milk, Fat and Protein	SCS	
Test day records, n	_	820,573	752,514	
	Total	93,725	86,435	
Cows (female with records)	HD	807	7	
	LD*	363	3	
	-	92,555	85,265	
Dulla (Cira of coura)	HD	26		
Bulls (Sire of cows)	-	2,229		
Females with genotypes	HD	1,791		
but without records	LD*	1		
Males other than bulls	HD	HD 2,313		
with genotypes				
Other animals in a pedigree	-	106,843	101,777	

*LD genotypes: only cows with records and their dams to reduce equation size

Random regression test day model

 $y_{ijklmno} = HTDT_{i} + M_{j}w + A_{k}w + hy_{l}v + pe_{m}z + peh_{m} \cdot f(THI) + u_{m}z + uh_{m} \cdot f(THI) + e_{ijklmno}$

- *y_{ijklmno}* : test day milk, fat, protein (kg), Somatic Cell Score
- *HTDT_i*: fixed effect of herd*test day*milking frequency
- M_j : fixed regression coefficients of calving month
- A_k : fixed regression coefficients of calving age
- hy_l : random regression coefficients of herd*calving year (HY) effects
- *pe*_m : random regression coefficients of general permanent environment (PE) effects
- *peh_m* : random linear regression coefficient of PE effect of heat tolerance
- u_m : random regression coefficients of general additive genetic (AG) effects
- uh_m : random linear regression coefficient of AG effects of heat tolerance
- $e_{ijklmno}$: random residuals at DIM: 6-35, 36-65, 66-95, 96-125, 126-215, 216-305
- $w' = \begin{bmatrix} \phi_0(t) & \phi_1(t) & \phi_2(t) & \phi_3(t) & \phi_4(t) & e^{-0.05t} \end{bmatrix}, v' = \begin{bmatrix} \phi_0(t) & \phi_1(t) \end{bmatrix}, z' = \begin{bmatrix} \phi_0(t) & \phi_1(t) & \phi_2(t) \end{bmatrix}$
- $\phi_p(t)$: Legendre polynomials

 $f(THI) = \begin{cases} 0 \text{ if } THI \le 60\\ THI - 60 \text{ if } THI \ge 60 \end{cases}$

Covariance components

$$\operatorname{var}\begin{bmatrix} hy\\ pet\\ ut\\ e \end{bmatrix} = \begin{bmatrix} I \otimes Q & 0 & 0 & 0\\ 0 & I \otimes P & 0 & 0\\ 0 & 0 & H \otimes G & 0\\ 0 & 0 & 0 & R \end{bmatrix}$$

- *I* : identity matrix
- Q : 2×2 matrix of (co)variances for HY effects
- *H* :a matrix combining additive relationship and genomic relationship
- *P*,*G* : 4×4 of (co)variances for total (general + heat tolerance) PE and AG effects
- *R* : diagonal matrix with residual variance corresponding to DIM category

AG (co)variances and heritability

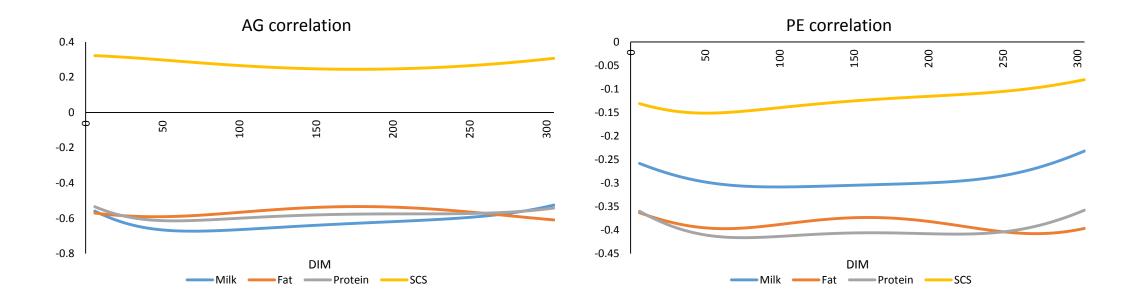
- General AG (co)variance at DIM t and t': $\operatorname{cov}(u(t), u(t')) = \operatorname{cov}[u_{m0}\phi_0(t) + u_{m1}\phi_1(t) + u_{m2}\phi_2(t), u_{m0}\phi_0(t') + u_{m1}\phi_1(t') + u_{m2}\phi_2(t')]$ $= \sum_{i,j} \operatorname{cov}(u_{mi}\phi_i(t), u_{mj}\phi_j(t'))$ $= \sum_{i,j} \phi_i(t)\phi_j(t')\operatorname{cov}(u_{mi}, u_{mj})$
- AG variance of heat tolerance: $f(THI)^2 \sigma_{uh}^2$
- AG covariance and correlation between general and heat tolerance at DIM t: $\sum_{i=1}^{n} \phi_i(t) \exp\left[u_{i} \phi_i(t) + u_{i} \phi_i$

 $Cov(u(t), f(THI) \cdot uh) = f(THI) \cdot cov[u_{m0}\phi_0(t) + u_{m1}\phi_1(t) + u_{m2}\phi_2(t), uh_m]$ = $f(THI) \cdot \sum_i \phi_i(t) cov(u_{mi}, uh_m)$ Correlation: $\frac{\sum_{i} \phi_{i}(t) \operatorname{cov}(u_{mi}, uh_{m})}{\sqrt{\sum_{i} \phi_{i}(t)^{2} \operatorname{cov}(u_{mi}, u_{mi}) \cdot \sigma_{uh}^{2}}}$

• Total AG variances and heritability at DIM t and THI:

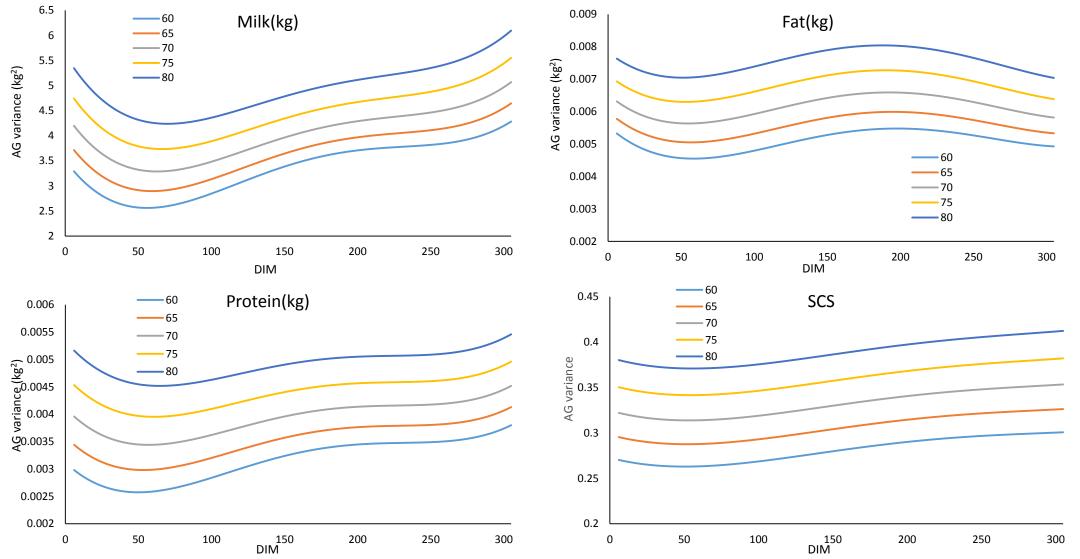
$$\sigma_{u_{total}}^{2} = \sum_{i} \phi_{i} \left(t\right)^{2} \operatorname{cov}\left(u_{mi}, u_{mi}\right) + f\left(THI\right)^{2} \sigma_{uh}^{2} + 2f\left(THI\right) \sum_{i} \phi_{i} \left(t\right) \operatorname{cov}\left(u_{mi}, uh_{m}\right)$$
$$h^{2} = \frac{\sigma_{u_{total}}^{2}}{\sigma_{u_{total}}^{2} + \sigma_{pe_{total}}^{2} + \sigma_{hy}^{2} + \sigma_{e}^{2}}$$

AG / PE correlation



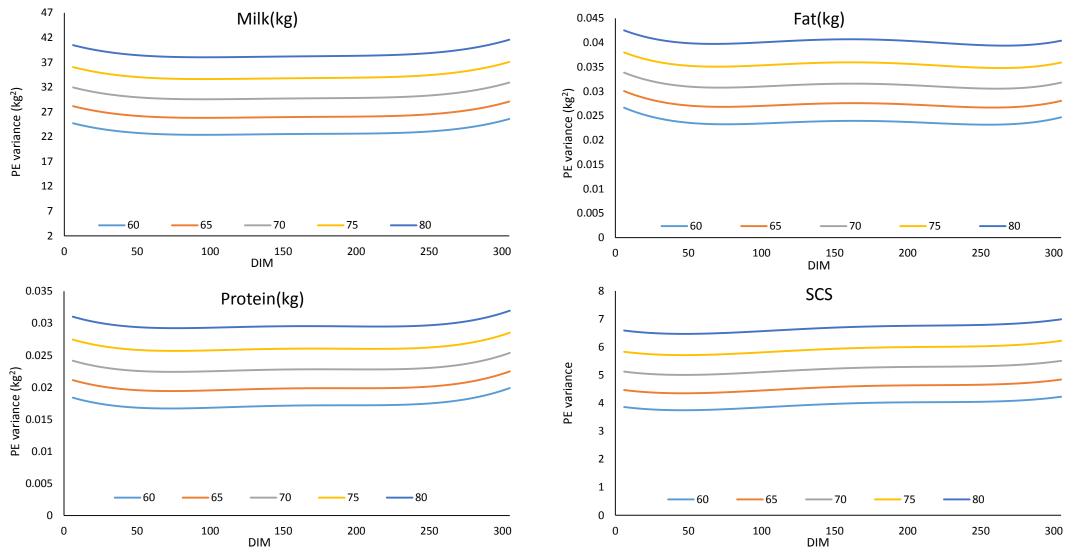
- AG correlations were negative, except for SCS.
- PE correlations were negative and weaker than the AG correlations.

Total AG variance



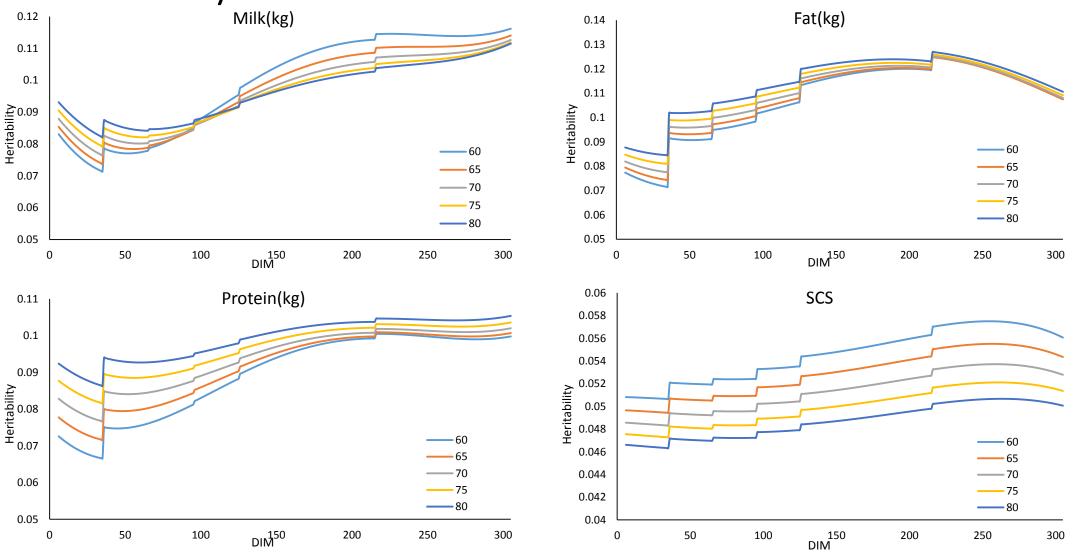
- The higher the THI, the larger the total AG variances.
- Change in Fat looked different at later stage of lactation.

Total PE variance



- The higher the THI, the larger the total PE variances.
- PE variances were bigger than AG variances.

Heritability



- h^2 (Fat, Protein) were larger for higher THI.
- h^2 (SCS) was smaller for higher THI due to larger difference of PE variances.

Summary

- PE variances of heat tolerance were larger than AG variances.
 - ➤ Various non-AG factors affect.
- Negative genetic correlation (general effect vs heat tolerance) should be considered carefully.

≻Use total AG effect.

• AG variances were smaller, whereas PE variances were larger than national genetic evaluation.

 \succ Further study is required.

• Heat stress affects more in later parities.

≻Later parities to be included.

• Variance components were successfully estimated. Genetic evaluation of heat tolerance would be feasible.

Acknowledgement

- JRA Livestock Promotion Funds for financial support.
- Mr. Masaki Oyamada, Holstein Cattle Association of Japan for genotype records.
- Dr Shogo Tsuruta, Yutaka Masuda (University of Georgia), and Dr Koichi Hagiya (Obihiro University of Agriculture and Veterinary Medicine) for their valuable suggestions.

Genetic analysis of skinfold thickness and its association with body condition score, and milk production traits in Chinese Holstein population

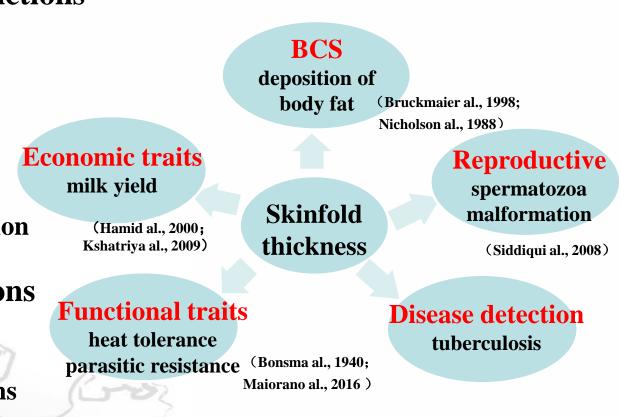
Hailiang Zhang¹, Wei Xu¹, Aoxing Liu^{1,2}, Xiang Li¹, Hanpeng Luo¹, Yachun Wang¹

1.China Agricultural University, China2.Aarhus University, Denmark

Feb 11, 2018 Auckland, NZ

Background

- Skin: the outermost structure and the largest organ of the mammals' body, undertakes the many important functions
- > Skinfold thickness:
- ✓ widely used to represent skin thickness
- ✓ measuring method friendly to animal
- ✓ suitable for measurement in large population
- The neck and rib are the body regions frequently used in previous studies
 - different repeatability in different regions
 - **different measuring difficulty in different regions**



Background

➢ In previous studies, the factors affecting the skinfold thickness have been explored (Dowling al., 1955; Patel al., 1958; Hayman al., 1966)

 $\checkmark\,$ breed, body regions, nutrition status, gender, age and measurer

Skinfold thickness is an important trait, however not been considered seriously in dairy. Very little studies regarding genetic analysis of skinfold thickness

year	author	species	Body region	No. Obs	h^2
2016	Maiorano	Nellore	scapula	17940	0.12 ± 0.02
1991	Slee	Merino Sheep	right mid-side	-	0.35±0.19

The objectives of this study were to estimate the heritability of skinfold thickness and its genetic association with BCS and milk production traits in Chinese Holstein

Material & method

□ Holstein milking cows in 9 scaled farms in Beijing

□ Measurement: skinfold thickness, BCS

- $\checkmark\,$ skinfold thickness at the neck (STN)
- $\checkmark\,$ skinfold thickness at the last rib (STR)
- **Device: Digital Vernier caliper**
- □ Collecting test-day records during measuring period

Measuring skinfold thickness at the neck

Measuring skinfold thickness at the last rib

Body condition score (BCS)

Year-month	No. of farms
2015, July-Aug	6
2016, June-Aug	7

Material & method

Factor analysis (SAS, GLM)

 $STN_{ijkl} = \mu + FM_i + PARITY_j + STAGE_k + b_1BCS + e_{ijkl}$

 $STR_{ijklm} = \mu + FM_i + PARITY_j + STAGE_k + BODYSIDE_l + b_2BCS + e_{ijklm}$

Genetic analysis (DMU, animal model)

□ bi-variate: STN, STR

6-traits: STN, STR, BCS, MY, FP and PP

STN = FM + PARITY + STAGE + A + E

STR = FM + PARITY + STAGE + BODYSIDE + A + E FR: far

BCS = FR + STAGE + A + E

MY = FY + PARITY + STAGE + A + E

FP = FY + PARITY + STAGE + A + E

PP = FY + PARITY + STAGE + A + E

Traits

STN: skinfold thickness over the neck STR: skinfold thickness over the last rib **BCS:** body condition score MY: milk yield *FP*: milk fat percentage *PP*: milk protein percentage **D** Effects FM: farm-measurer of skinfold FR: farm-rater of BCS FY: farm-year of test-day records *PARITY*: parity of the cow *STAGE*: milking stage of the cow **BODYSIDE:** body side of the measured cow b_1/b_2 : regression coefficient for BCS A: random additive genetic effect E: random residual effect

Results & discussion

Descriptive statistics

Traits	No. Obs	MAX	MIN	MEAN	SD	CV
STN/mm	4428	1.00	13.28	7.16	1.30	18.1%
STR/mm	4452	1.07	22.77	11.76	1.97	16.7%
BCS	5810	1.00	5.00	2.90	0.79	27.4%
MY/kg	5646	0.80	90.00	34.58	10.20	29.5%
FP/%	4980	0.68	7.99	3.97	0.88	22.2%
PP/%	5544	1.53	9.33	3.01	0.30	10.1%

- The STN was thinner than STR
- There is a significant body side effect on skin thickness at the last rib!

Factor analysis

Traits	\mathbf{D}^2	FN	A/FS/FY	Stage		Stage Parity		BCS		Body side	
Iraits	ĸ	df	F-value	df	F-value	df	F-value	df	F-value	df	F-value
STN	0.39	13	205.41**	5	6.23**	4	19.49**	1	60.76**		
STR	0.37	12	109.56**	5	3.18**	4	27.78**	1	71.53**	1	149.69**

Results & discussion

Results from bi-variate model

Traits	No. Obs	Additive VC	Error VC	Phenotype VC	Heritability ±SE
STN	4307	0.13	0.90	1.03	0.13 ± 0.03
STR	4331	0.63	1.97	2.60	0.24 ± 0.04

Results from 6-traits model

Traits	No. Obs	Additive VC	Error VC	Phenotype VC	Heritability ±SE
STN	4307	0.13	0.90	1.03	0.13 ± 0.03
STR	4331	0.64	1.96	2.61	0.25 ± 0.05
BCS	5585	0.05	0.34	0.39	0.12 ± 0.03
MY	5634	8.34	68.73	77.07	0.11 ± 0.02
FP	4969	0.05	0.66	0.71	0.07 ± 0.02
PP	5533	0.01	0.07	0.08	0.08 ± 0.02

- ✓ Estimated heritabilities for
 STN was higher than STR:
 low to moderate
- ✓ Estimated heritability of
 STN & STR are similar
 between bi-variate model
 and 6 traits model
- ✓ The estimated heritability
 was similar with the previous
 study on Nellore (Maiorano al., 2016)

Results from 6-traits model

Genetic (below the diagonal) and phenotypic (above the diagonal) correlations

Traits	STN	STR	BCS	MY	FP	PP
STN		0.33	0.13	-0.01	0.00	-0.01
STR	0.80 ± 0.08		0.15	-0.05	-0.02	-0.02
BCS	0.34 ± 0.15	0.19 ± 0.14		-0.21	0.03	0.09
MY	0.13±0.16	-0.03 ± 0.15	-0.35 ± 0.14		-0.08	-0.16
FP	0.13 ± 0.20	0.04 ± 0.18	0.17 ± 0.19	-0.69 ± 0.15		0.28
PP	0.05 ± 0.19	0.04 ± 0.17	0.30 ± 0.12	-0.58 ± 0.15	0.66 ± 0.17	

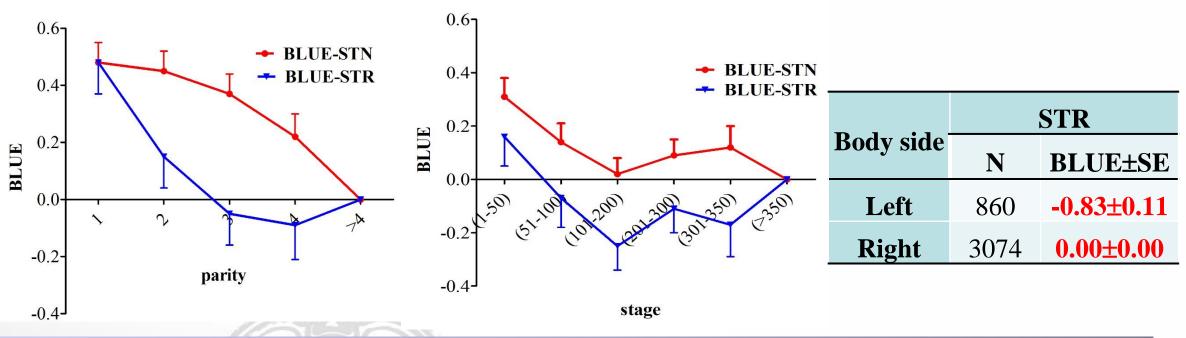
- ✓ a high genetic correlation existed between STN and STR
- ✓ a moderate and positive genetic correlation between STN and BCS (0.34)
- ✓ Low genetic correlations existed between skinfold thickness and milk performance. r_g of STN and milk production traits were higher than that between STR and milk production traits

Results & discussion

LAN EN A

BLUE of fixed effects

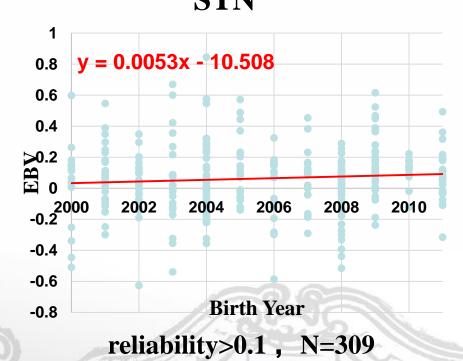
BLUE: best linear unbiased estimated



- ✓ Roughly, skinfold thickness decreased with the increase of parity, first drop and then rise with the increase of DIM
- Skinfold thickness is sensitive to change of parity and milking stage in lactating cows

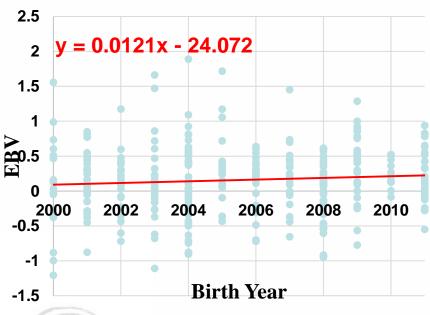
Results & discussion

STN STR Senetic trend of EBV of skinfold thickness (bulls with Rel. >0.1)



From 2000 to 2011

Change of EBV=0.06 mm=0.17σ_A



reliability>0.1, N=329

Change of EBV=0.14 mm=0.18 \sigma_A

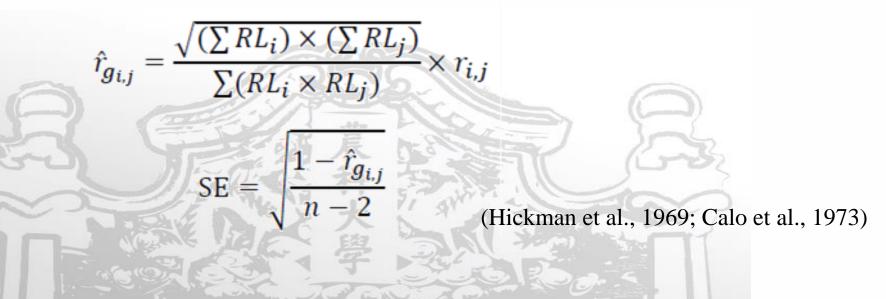
Conclusions

- Skinfold thickness is a trait with a low to moderate heritability, and there is a high genetic correlation between skinfold thicknesses on different body regions in Holstein population
- Skinfold thickness is easy measurable trait and sensitive to change of parity and milking stage in lactating cows
- Skinfold thickness can be considered as an additional information of BCS to evaluate fat deposition
- Selection on skinfold thickness to improve milking cow's ability to fight with the negative energy balance is feasible as only weak genetic correlations existed between skinfold thickness and milk performance

Acknowledgement

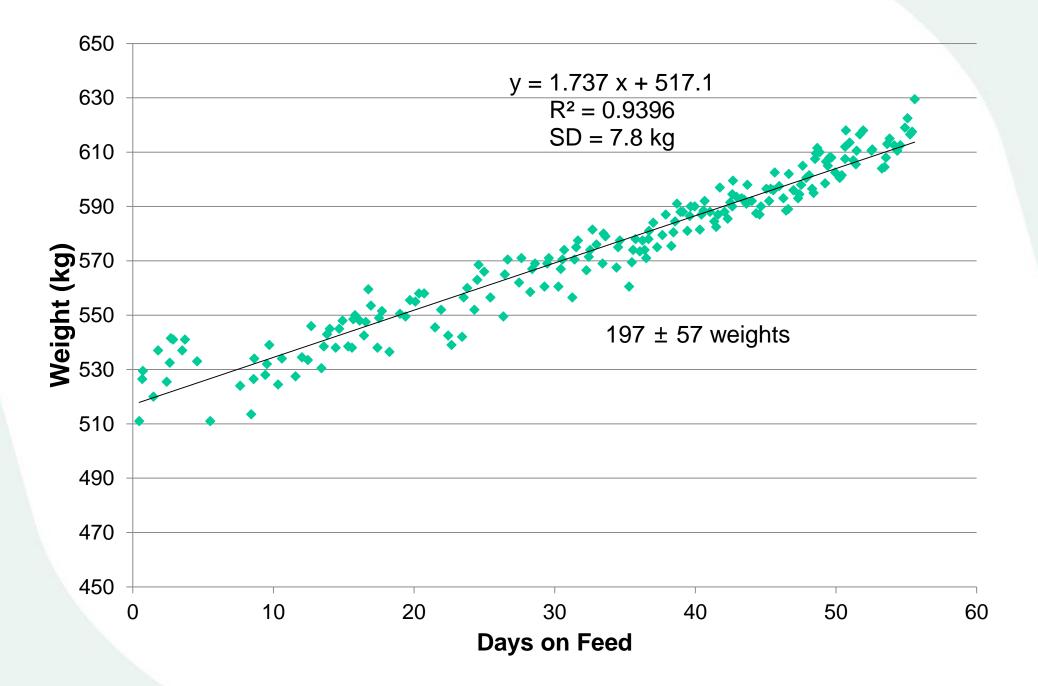
Genetic correlations with other traits

	Rectal	Rectal		Healthy	Healthy	Healthy	Healthy
	temperature	temperature	longevity	traits	traits	traits	traits
	(AM)	(PM)		(reproduction)	(digestion)	(udder)	(hoofs)
STN	-0.14	-0.02	0.13	-0.14	0.01	0.03	0.06
STR	-0.11	-0.09	0.20	-0.11	0.00	-0.01	-0.02



Is a 35-day feeding test with automatic daily weighting good enough for evaluating beef cattle for feed efficiency traits?

R.A.A. Torres Junior, L.O.C. Silva, R. Favero, R.C. Gomes, A. Gondo, S. Tsuruta, M.V. Costa, V. Okamura, G.R.O. Menezes, P.R.C. Nobre, L.M Nieto



Standard Error of Computed Gain

- (Final weight Initial weight)/number days on feed for 70 days
 SE of gain = (2)^{0.5} * 7.8/70 = 0.157 kg.day⁻¹ (0.098 kg.day⁻¹)
- Regression on weekly weights (56 days)

SE of gain = $\frac{7.8}{\sqrt{\sum_{i=0}^{nweeks} (x_i - \bar{x})^2}} = \frac{7.8}{\sqrt{2444}} = 0.158 \text{ kg.day}^{-1}$

• Regression on multiple daily weights (197 weights in 56 days)

SE of gain =
$$\frac{7.8}{\sqrt{\sum_{i=1}^{nmeasures}(x_i - \bar{x})^2}} = \frac{7.8}{\sqrt{46,630}} = 0.036 \text{ kg.day-1}$$

• Regression on multiple daily weights (94 weights in 35 days)

SE of gain =
$$\frac{7.8}{\sqrt{\sum_{i=1}^{nmeasures} (x_i - \bar{x})^2}} = \frac{7.8}{\sqrt{9,460}} = 0.080 \text{ kg.day^-1}$$

Regression on daily weights (in 35 days)

SE of gain =
$$\frac{7.8}{\sqrt{\sum_{x=0}^{ndays} (x-\dot{x})^2}} = \frac{7.8}{\sqrt{3885}} = 0.125 \text{ kg.day}^{-1}$$

Material and Methods

- 601 Nelore Bulls from 6 test batches in 2016 and 2017
- Final Weight, Average Metabolic Weight, Average Daily Gain, Average Daily Feed Intake, Residual Feed Intake and Feed Efficiency Ratio
- Total 56 days of test and First 35 days of test.
- Contemporary group included Test Batch and Herd of Origin
- Total Pedigree of 12,785 animals
- Simple animal Model with contemporary group effect and linear effect of age within contemporary group
- Software Gibbs2f90 and Postgibbsf90

Results and Discussion

Table 1. Correlation and their standard-errors between 35-day and 56-day test results for the studied traits.

Trait ¹	Phenotypic Correlation	Genetic Correlation
FW (kg)	0.974	0.976 ± 0.007
AMW (kg)	0.992	0.993 ± 0.002
ADG (kg d ⁻¹)	0.864	0.904 ± 0.031
ADFI (kg d ⁻¹)	0.940	0.952 ± 0.021
RFI (kg d ⁻¹)	0.875	0.937 ± 0.022
FER (g kg ⁻¹)	0.800	0.879 ± 0.034

¹ FW, final weight; AMW, average metabolic weight; ADG, average daily gain; ADFI, average daily feed intake in dry matter basis; RFI, residual feed intake; FER, feed efficiency ratio.

Results and Discussion

Table 2. Heritability estimates and their standard-error for 35-day and 56-day test results of the studied traits.

Trait ¹	35-day trait	56-day trait
FW (kg)	0.541 ± 0.089	0.538 ± 0.091
AMW (kg)	0.561 ± 0.088	0.557 ± 0.090
$ADG (kg d^{-1})$	0.583 ± 0.080	0.630 ± 0.075
ADFI (kg d ⁻¹)	0.508 ± 0.090	0.533 ± 0.094
RFI (kg d^{-1})	0.533 ± 0.088	0.539 ± 0.095
$\mathbf{FER} \; (\mathbf{g} \; \mathbf{kg}^{-1})$	0.603 ± 0.075	0.616 ± 0.079

¹ FW, final weight; AMW, average metabolic weight; ADG, average daily gain; ADFI, average daily feed intake in dry matter basis; RFI, residual feed intake; FER, feed efficiency ratio.

Conclusion

Yes, we can reduce the test to 35 days, as the precision of gain will be high enough to enable small decrease on genetic gain for the feed efficiency measures (around 15%) and even smaller changes on rankings of proven bulls.

Thank you roberto.torres@embrapa.br

A novel, comprehensive genetic and management initiative to reduce the environmental impact of New Zealand dairy cattle.

Mark Camara, Jeremy Bryant, Peter Amer, Dorian Garrick, Talia Grala, Stewart Ledgard, David Chapman, Eric Kolver, David Burger, Mark Shepherd, Kate Sargeant, Bruce Thorrold

New Zealand Animal Evaluation Limited

2018 Interbull Meeting, Auckland New Zealand

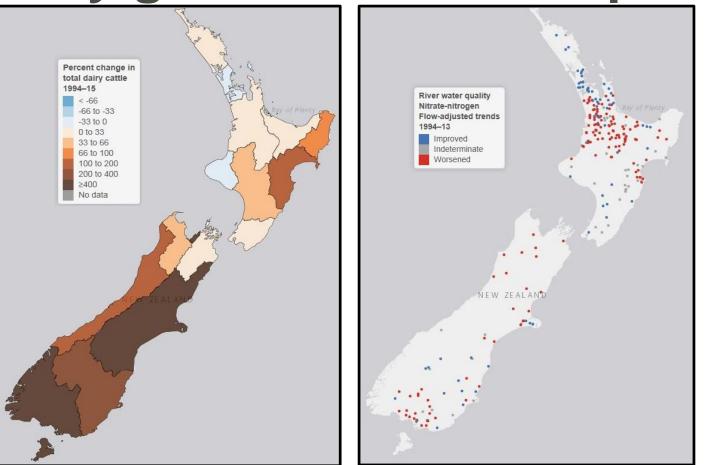
Government Industry Partnership

Ministry of Business Innovation & Employment wants impact

This programme will deliver transformational options for dairy and beef farmers to meet environmental targets by:

- 1. Developing genetically low nitrogen excreting animals
- 2. Implementing genetic and management strategies to reduce nitrogen leaching
- 3. Ultimately, this research partnership will reduce sectorwide nitrate leaching by 20%

Industry growth and water quality



Intense public pressure

Central Government Response Freshwater National Policy Statement (2014)

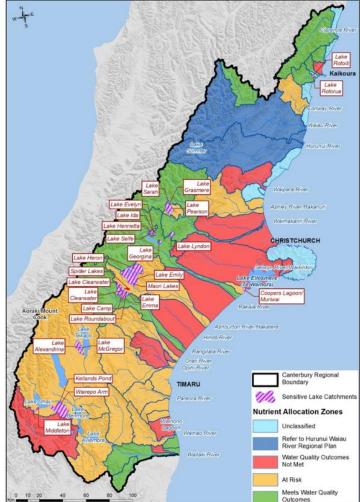
- Informs local governments about their responsibilities under Resource Management Act
- Directs regional councils to set objectives for the state of fresh water bodies and set limits to meet them
- Emphasizes catchment-level targets rather than specific on-farm practices
- Full implementation by **31 December 2025**

Regionally variable nitrogen limits

- Auckland: N input limits:150kg N/ha/yr on sandy soils, 200kg N/ha/yr other soils
- **Bay of Plenty:** Limits on N and P that can leave a farm property based on a 3 year "benchmark" period (mid-2001 to mid-2004).
- Horizons: N limits based on farm's land use capability (LUC) classification

Variation within regions: Canterbury

- Nitrogen Baseline 2009-2013 averaged N Loss.
- **Red** from 2017 need consent and must be at baseline (if over 20kg N/ha/yr).
- Orange Baseline + 5kg N consent required 2016 (if over 20kg N/ha/yr).
- **Blue** and **Green** Consent required if increase greater than 5kg N/ha/yr.

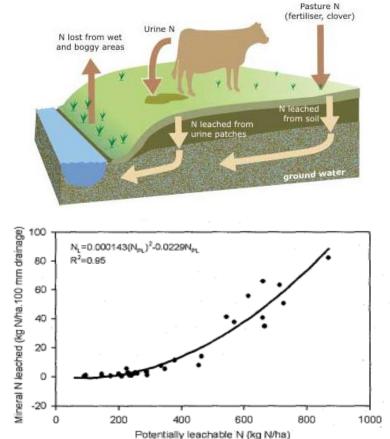


Enforcement largely model-based

Cow urine important for nitrogen leaching

Urine patches can have1200 kg N per hectare, and plants can't process it all. (Haynes and Williams, 1993)

> Di HJ, Cameron KC (2000) New Zealand Journal of Agricultural Research 43, 139-147.

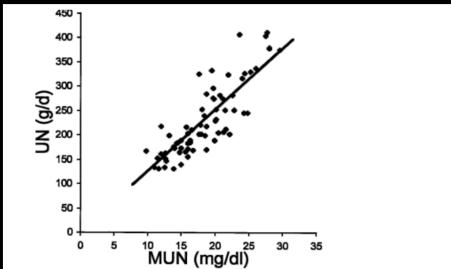


Advantages of genetic solutions

- Cumulative and permanent
- Universally applicable (assuming low GxE)
- Infinitely scalable
- No changes to infrastructure or farming practices
- Low cost to farmers once implemented
- Can be "stacked" with management solutions (e.g. alternative pasture plants)

Can milk urea nitrogen (MUN) predict urinary nitrogen (UN)?

- 1. Ammonia in rumen \rightarrow b passive diffusion to milk *al.*, 1993).
- 2. MUN routinely measure
- 3. MUN and UN are phenor response to dietary [N].
- 4. MUN is heritable (Beats



Jonker JS, Kohn RA and Erdman RA 1998. Using milk urea

nitrogen to predict nitrogen excretion and utilization efficiency in

lactating dairy cows. Journal of Dairy Science 81(10), 2681-2692.

Key technology: automated urine sensors

Developed by AgResearch

Continuously-recorded individual-level data for UN, urine volume, and urination frequency in feed stalls or while grazing

> M.Shepherd[,] P.Shorten[,] D.Costall[,] K.A.Macdonald (2017) Agriculture, Ecosystems & Environment 236: 285-294

Research Aims

'Knowing is not enough; we must apply. Willing is not enough; we must do.'

- Johann Wolfgang von Goethe

- 1. Genetics, genomics, physiology, and omics to enable selective breeding
 - Quantitative genetic and genomic analyses in representative "Development Herds"
 - Physiological and -omic comparisons of phenotypically divergent animals
 - Develop new animal evaluation models
- 2. Validation, demonstration, and adoption to achieve national water quality outcomes
 - Develop practical breeding strategies & economic values
 - Validate mitigation strategies at the whole-farm and catchment levels
 - Develop enhanced models for sensible regulation

7-year Programme

Questions?

Mark.Camara@dairynz.co.nz

New Zealand Animal Evaluation Limited

Methods for discovering and validating relationships among genotyped animals

G.R. Wiggans,¹ P.M. VanRaden,² and L.R. Bacheller²

- ¹ Council on Dairy Cattle Breeding, Bowie, Maryland, USA
- ² Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, USA

United States Department of Agriculture

Validation of parents

- Over 2.2 million animals genotyped in U.S. system
- Portion of parents validated
 - 97% of sires
 - 39% of dams
- Each genotype compared with all others to discover identical genotypes and parent-progeny relationships
- Animals with incorrect sire or dam excluded from evaluation

Validation of grandsires

- If parent not genotyped or not confirmed, grandsire is checked
- Grandsire declared unlikely if animal and grandsire have more opposite homozygotes than threshold, which declines as possible comparisons increase
- Possible grandsires are suggested if low percentage of conflicts and birth date reasonable
- Animals with unlikely grandsires excluded from evaluation

Detection of chromosomal abnormalities

- Where parent and progeny have more conflicting SNPs than allowed for a true parent-progeny relationship, location of conflicts is checked
- If conflicts are concentrated on a single chromosome, parentprogeny relationship is accepted
 - Large deletion animal is homozygous in the region
 - Uniparental disomy heterozygous SNPs in the region
 - 102 cases discovered so far

Quality control

- Each SNP evaluated for
 - Call rate
 - Portion heterozygous
 - Parent-progeny conflicts
- Parent-progeny conflicts assessed for all SNPs in common between parent and progeny genotypes
- Trio test if both parents genotyped
- 30 chips supported

Computational burden

- Computer time to compare each genotype with all others steadily increases with number of genotype in database
- 1,000 SNPs that were on all chips used to exclude most unrelated animals
- Further speed-up needed
 - Compare fewer SNPs
 - Exclude some genotypes from comparison
 - Optimize comparison method

100 SNPs

- Selected based on call rate, MAF, and Mendelian consistency
- Measure: Conflicts/(number of both SNPs homozygous)
- Threshold of 8.4% eliminated 99.7% of genotypes without eliminating any confirmed parent-progeny pairs
- Test with only 50 SNPs eliminated only half the unrelated animal genotypes

Compare genotypes for fewer animals

- For animals with both parents confirmed, check only recent genotypes (starting with births 500 days before) for identical genotypes
- For animals with 1 parent confirmed, skip genotypes with a different confirmed parent when checking for identical genotypes
- For grandsires, skip comparisons with bulls that have no progeny

MGS checking with haplotypes

- For animals included in the evaluation, haplotypes are generated during imputation
- These haplotypes can be used to validate or discover MGS more accurately (even MGGS can be discovered)
- For MGS, identify bulls with around 45% of haplotypes in common and at least 15% better than next best bull
- Discovered MGS assigned as dam's sire if unknown

Use haplotypes for initial MGS discovery

- Remove searching for possible MGS from initial genotype validation program for faster processing
- Include new animals with unknown or unlikely MGS in weekly evaluation calculations (confirmed sire required)
- For genotypes not qualifying for evaluation, blank conflicting pedigree and suppress release of evaluation
- Continue use of current SNP comparison process for PGS

Timing comparison

- Time to load 1 submission of 1,967 genotypes
 - Current 51 minutes
 - Eliminate 497 MGS searches 39 minutes
- Time to run weekly MGS discovery for Holsteins 9 minutes
- Time to run monthly MGS/MGGS discovery for Holsteins 7 hours

Further possible use of discovered MGS

 When dam is unknown, constructed ID necessary to store discovered MGS

Ayrshire	Brown Swiss	Guernsey	Holstein	Jersey
21	245	68	213,704	21,963

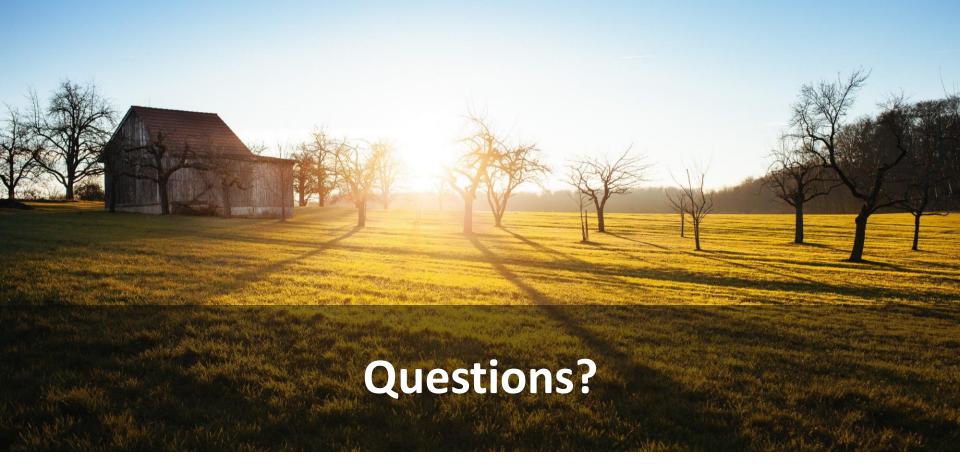
- More complete pedigree gives better imputation
- Numerator relationship matrix (A) more similar to genomic relationship matrix (G)

Conclusions

- Rapid increase in size of genotype database requires periodic modification of procedures
- Checking all genotypes is desirable for correctly assigning animal to genotype and improving pedigree accuracy
- 100 high quality SNPs are effective in excluding most genotypes that are not parents or progeny
- Grandsires (even great-grandsires) can be checked and candidates discovered

Acknowledgments & disclaimers

- USDA-ARS project 8042-31000-002-00, "Improving dairy animals by increasing accuracy of genomic prediction, evaluating new traits, and redefining selection goals"
- Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by USDA; USDA is an equal opportunity provider and employer



Wiggans, Interbull, Feb. 2018 (15)

Efficient computation of base generation allele frequencies

11 February; Interbull meeting, Auckland, New Zealand

Michael Aldridge, Jeremie Vandenplas & Mario Calus

Allele frequencies in genomic prediction

Genomic prediction requires allele frequencies (AF)

Commonly, AF are current data averages

Theoretically, AF should be computed for the base generation

Base generation AF

Base generation = base generation in pedigree!

Base generation AF required for calculation of:

- Genomic relationships in (single-step) GBLUP
- Model-based reliabilities for multi-step genomic evaluations
- Computation of relationships among metafounders¹

¹Legarra, A., O. F. Christensen, Z. G. Vitezica, I. Aguilar, and I. Misztal. 2015. *Genetics*. 200:455-468.

Compare accuracy and efficiency

of different methods to compute

base generation allele frequencies

Methods – overview

• AF:
$$p = \frac{1}{2}\hat{\mu}$$

Method	Mean is estimated:	
All	Across all genotypes	
Oldest	Across oldest generation genotyped	
BLUP	In BLUP model	
GLS	General Least Squares (GLS)	

Methods - BLUP

BLUP model; y = genotype (0,1,2)

h²=0.99; allowing some genotyping error

Univariate; or multivariate with zero genetic correlations

Implemented using MiXBLUP

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367. Gengler, N., P. Mayeres, and M. Szydlowski. 2007. Animal. 1:21-28.

Methods – GLS (dense / sparse)

• GLS: $\hat{\mu}_i = (\mathbf{1}' \mathbf{A}_{22}^{-1} \mathbf{1})^{-1} \mathbf{1}' \mathbf{A}_{22}^{-1} \mathbf{Z}_i$

Dense: Compute and invert A₂₂

• Sparse:
$$A_{22}^{-1}1 = (A^{22} - A^{21}(A^{11})^{-1}A^{12})1$$

Own program / Intel MKL-PARDISO

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367.

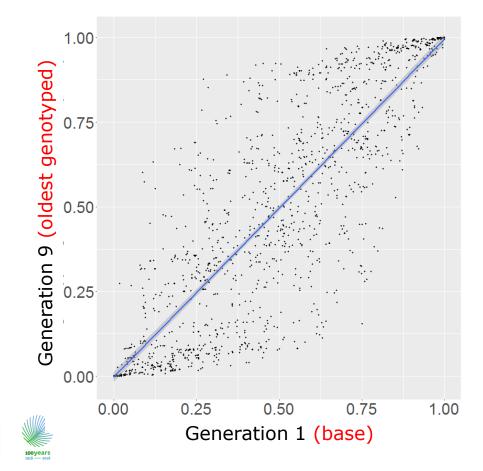
Garcia-Baccino, C.A., Legarra, A., Christensen, O.F., Misztal, I., Pocrnic, I., Vitezica,

Z.G., and Cantet, R.J. 2017. Genet. Sel. Evol. 49, 34.

Data (simulation)

- Holstein-like population
- Generations 9 to 12 (after base) fully genotyped
- 325,266 animals in pedigree; 100,078 genotyped
- 1670 SNPs (providing replication)
- Selection: None or Strong

Change in AF across generations (with selection)



9

Results - accuracy

Method	Without selection	With selection
All	0.99 ± 0.01	0.87 ± 0.01
Oldest	0.99 ± 0.01	0.88 ± 0.01
BLUP	0.99 ± 0.01	0.96 ± 0.01
GLS_dense	0.99 ± 0.01	0.97 ± 0.01
GLS_sparse	0.99 ± 0.01	0.97 ± 0.01

Results - efficiency

Method	Process time	RAM
AII	0-00:03:44	7.8 GB
Oldest	0-00:01:19	1.6 GB
BLUP (60 SNPs)	0-13:42:17	49.0 GB
GLS_dense	50-20:12:16	165.9 GB
GLS_sparse	0-00:01:28	2.6 GB

=> Efficiency of GLS_sparse is very competitive!

Discussion

- Few GLS_sparse estimates outside 0-1 range:
 - Only for very low MAF < 0.001
 - Swapping allele code solved most of those

- Estimates were not affected when having:
 - 2% genotyping errors
 - 25% of sires unknown

Conclusions

- Base generation AF required for:
 - Genomic relationships in (single-step) GBLUP
 - Model-based reliabilities for multi-step genomic evaluations
 - Computation of relationships among metafounders

- GLS_sparse estimator recommended
 - Accurate & very efficient

Acknowledgements

HENDRIX GENETICS TOPIGS NORSVIN PROGRESS IN PIGS

Tuning indirect predictions based on SNP effects from ssGBLUP

Daniela Lourenco

A. Legarra, S. Tsuruta, D. Moser, S. Miller, I. Misztal

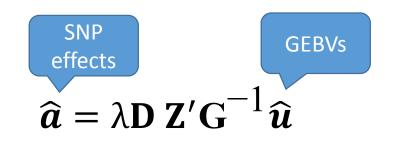
Interbull 2018

Why Indirect predictions?

- Interim evaluations
 - Between official runs
- Not all genotyped animals are in the evaluations
 - Animals with incomplete pedigree increase bias and lower R²
- Commercial products
 - e.g. GeneMax for non-registered animals

Indirect predictions in ssGBLUP

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{W} \\ \mathbf{W}'\mathbf{X} & \mathbf{W}'\mathbf{W} + \mathbf{H}^{-1}\boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'\mathbf{y} \end{bmatrix}$$



$$\mathbf{D}\mathbf{G}\mathbf{V}=\mathbf{Z}\hat{a}$$

$$\mathbf{GEBV}_{\mathbf{young}} = w_1 \mathbf{PA} + w_2 \mathbf{DGV} - w_3 \mathbf{PP}$$

$$\mathsf{GEBV}_{\mathsf{young}} \approx \mathsf{DGV} = \mathsf{Z}\hat{a}$$

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
$$\mathbf{G}_{APY}^{-1}$$

Lourenco et al., 2015

Problems with Indirect predictions

Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus¹

D. A. L. Lourenco,*² S. Tsuruta,* B. O. Fragomeni,* Y. Masuda,* I. Aguilar,[†] A. Legarra,[‡] J. K. Bertrand,* T. S. Amen,[§] L. Wang,[§] D. W. Moser,[§] and I. Misztal*

© 2015 American Society of Animal Science. All rights reserved. J. Anim. Sci. 2015.93:2653–2662 doi:10.2527/jas2014-8836

$COR(\widehat{GEBV}, \mathbb{Z}\hat{a}) > 0.99$

 $Avg(\mathbf{Z}\hat{a}) \approx 0$

Objectives

1) Fine-tune indirect predictions to be compatible with GEBV

2) Investigate whether SNP effects are accurate when APY is used

• Possibly use subset of core animals

Dataset

- American Angus Association
 - 8.2M animals in pedigree
 - 6.2M birth weight (BW)
 - 6.8M weaning weight (WW)
 - 3.4M post-weaning gain (PWG)
 - 81k genotyped
 - born 1977-2012: 66k
 - born 2013-2014: 15k

- Complete
 - Phenotypes up to 2012
 - Genotypes up to 2014 (81k)
- Reduced
 - Phenotypes up to 2012
 - Genotypes up to 2012 (66k)

- 3-trait with mat and mpe
 - Results for PWG

Accuracy of SNP effects from G_{APY}^{-1} or G_{cc}^{-1}

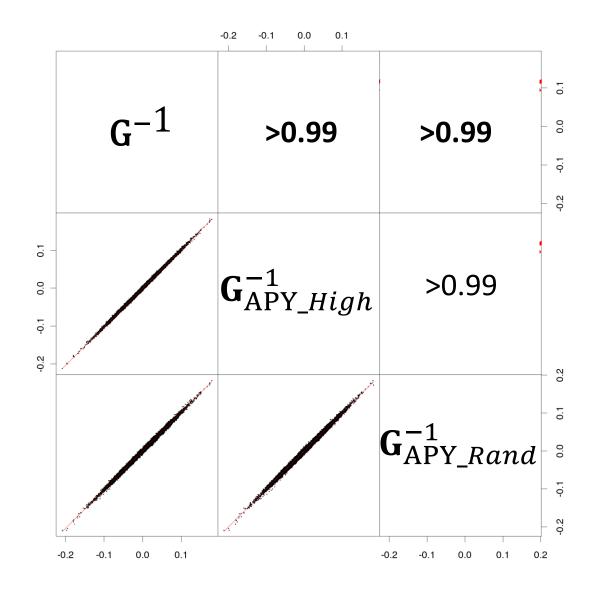
 $\widehat{a}_{\mathbf{G}} = \lambda \mathbf{D} \, \mathbf{Z}' \mathbf{G}^{-1} \widehat{u}$

 $\widehat{a}_{\mathbf{G}_{APY}^{-1}\mathbf{H}} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{APY_high_reliability}^{-1} \widehat{u}_{APY}$ $\widehat{a}_{\mathbf{G}_{APY}^{-1}\mathbf{R}} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{APY_random}^{-1} \widehat{u}_{APY}$

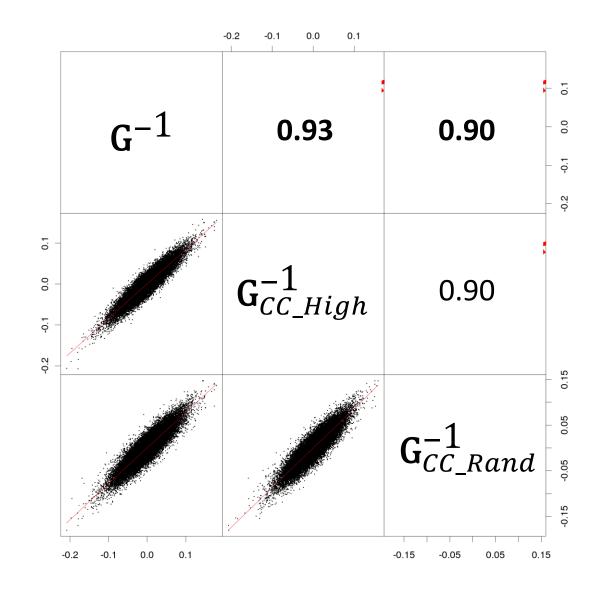
 $\widehat{a}_{\mathbf{G}_{cc}^{-1}\mathbf{H}} = \lambda \mathbf{D} \ \mathbf{Z}' \mathbf{G}_{cc_high_reliability}^{-1} \widehat{u}_{\mathrm{APY}}$ $\widehat{a}_{\mathbf{G}_{cc}^{-1}\mathbf{R}} = \lambda \mathbf{D} \ \mathbf{Z}' \mathbf{G}_{cc_random}^{-1} \widehat{u}_{\mathrm{APY}}$

- Correlation between SNP effects
- Correlation between $\mathbf{Z}\hat{a}$

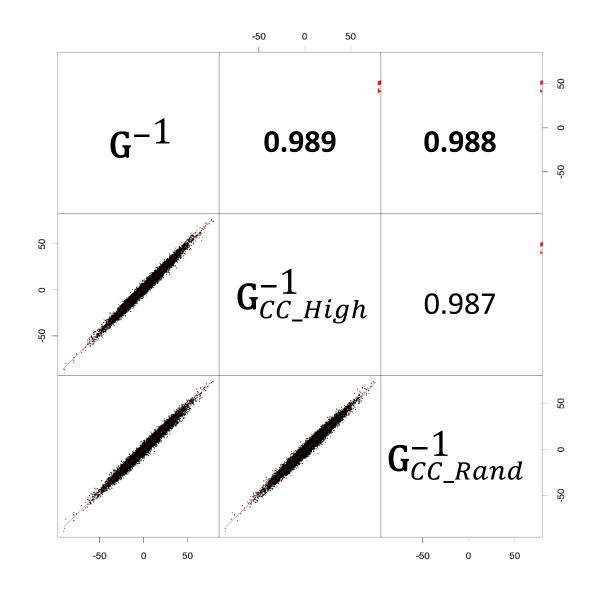
Statistics for SNP effects



Statistics for SNP effects



Statistics for $\mathbf{Z}\hat{a}$



10

Fine-tuning indirect predictions from ssGBLUP

Understanding genetic and genomic bases

- Base of BLUP: founders of the pedigree
- Base of GBLUP: *genotyped* animals
- Base of SSGBLUP: Vitezica et al. (2011) modelled as a mean in genotyped animals
 - $p(\boldsymbol{u}_g) = N(\boldsymbol{1}\mu, \mathbf{G})$
 - μ = (Pedigree base) (Genomic base)

Fine-tuning indirect predictions from ssGBLUP

SNP and

pedigree

fractions

1) Formula in Legarra (2017) $\widehat{u}_{ip} = \widehat{\mu} + 0.95 \mathbf{Z} \widehat{a} + 0.05 \widehat{u}_{parents}$

2) Double fitting

a) fit a regression using genotyped animals in the evaluation

$$\mathrm{DGV}_{eval} = b_0 + b_1 \mathbf{Z}\hat{a}$$

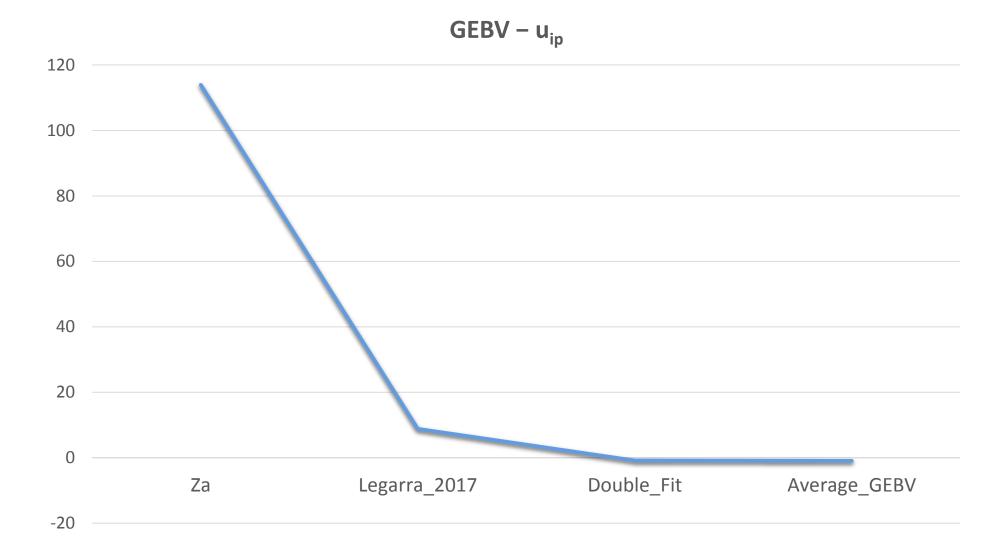
b) apply regression for indirectly predicted animals

 $\widehat{\boldsymbol{u}}_{ip} = b_0 + b_1 \mathbf{Z} \widehat{a}$

3) Add average GEBV

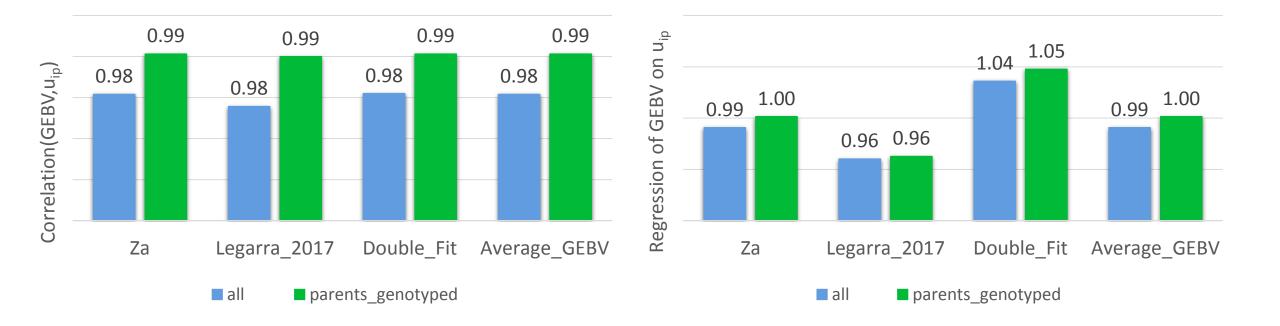
$$\widehat{\boldsymbol{u}}_{ip} = \overline{GEBV}_{eval} + \mathbf{Z}\widehat{a}$$

Bias of indirect predictions



Correlation &

Regression Coefficient



Fine-tuning indirect predictions in ssGBLUP

$$\mathbf{E}(\boldsymbol{u}|\boldsymbol{a}) = \hat{\boldsymbol{u}}|\hat{\boldsymbol{a}} = \boldsymbol{\mu} + \mathbf{Z}\frac{1}{2\sum p(1-p)} \left(\mathbf{I}\frac{1}{2\sum p(1-p)}\right)^{-1} (\hat{\boldsymbol{a}} - 0)$$

$$\widehat{\boldsymbol{u}}|\widehat{\boldsymbol{a}} = \boldsymbol{\mu} + \mathbf{Z}\widehat{\boldsymbol{a}}$$

$$\sim$$

$$\widehat{\boldsymbol{u}}|\widehat{\boldsymbol{a}} = \overline{GEBV} + \mathbf{Z}\widehat{\boldsymbol{a}}$$

Final Remarks

- Indirect predictions are unbiased after corrections
 - Can be used as interim evaluation

- Indirect predictions based on core animals are slightly less accurate
 - Reduction in computing time (no \mathbf{G}_{nC}^{-1} and \mathbf{G}_{nn}^{-1})

• SNP effects from ssGBLUP may be useful for SNP MACE

Acknowledgements

Validation of genomic reliability and gains from phenotypic updates

Paul VanRaden and Jeff O'Connell*

Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA, Beltsville, MD *University of Maryland-Baltimore paul.vanraden@ars.usda.gov

Topics

- Methods to compute genomic reliability
 - Summarized by Liu et al (2017)
 - GREL compared by Sullivan and Jakobsen (2014)
- Simple validation of genomic reliability
 - Do actual EBV changes agree with published REL?
 - Examples from USA and Intergenomics
- Gains in reliability from more frequent updates
 - Similar math can determine the value of re-estimating marker effects more often

REL calculation vs. validation

• REL estimation

- Adjust theoretical REL such as from SNP-BLUP-REL or from size of reference population
- Use prediction error variance (PEV) because correlations are biased downward by selection
- REL validation
 - Similar to validating EBVs using truncated data
 - Examine published REL for 6 traits and Net Merit
 - Examine 3 breeds (HOL, JER, BSW) on USA scale

Genomic reliability theory

- Selection reduces variance such that Var(EBV) < REL * Var(BV), but not prediction error variances (PEV):
- PEV = Var(EBV BV) = (1 REL) Var(BV)
- Variance of EBV differences are proportional to the difference in reliabilities regardless of selection. If EBV₁ and EBV₂ are earlier and later genomic evaluations with reliabilities REL₁ and REL₂, then
- $Var(EBV_2 EBV_1) = (REL_2 REL_1) Var(BV)$
- If REL₂ is known, high, and accurate, then solve for
- $REL_1 = REL_2 Var(EBV_2 EBV_1) / Var(BV)$

Data to validate genomic reliability

- Published genomic evaluations from April 2014
- Published genomic evaluations from April 2017
- SD of difference in genomic PTAs
- REML estimates of true TA SD from Interbull MACE
- Example for Holstein protein validation bulls:
- Average published REL₁ was 0.76, REL₂ was 0.95, SD of change was 8.4, and REML TA SD was 17.5. The observed REL₁ for protein was calculated as
- Observed $REL_1 = 0.95 (8.4)^2 / (17.5)^2 = 0.72$

Observed vs. published reliability, 2014

Trait	Observed	Published	Diff	Observed	Published	Diff	
	Jerseys			Holsteins			
Milk	73	68	+5	72	76	-4	
Fat	72	68	+4	74	76	-2	
Protein	71	68	+3	72	76	-4	
Longevity	47	55	-8	65	70	-5	
SCS	64	62	+2	77	73	+4	
Preg Rate	63	52	+11	69	68	+1	
NetMerit	68	64	+4	68	73	-5	
Average	65	62	+3	71	73	-2	

Observed vs. published reliability, BSW

Trait	Observed	Published	Diff	Observed	Published	Diff	
	Brown Swiss - USA			BSW - Intergenomics			
Milk	62	63	-1	70	68	+2	
Fat	64	63	+1	76	68	+8	
Protein	57	63	-6	66	68	-2	
Longevity	57	55	+2	63	61	+2	
SCS	64	59	+6	71	66	+5	
Preg Rate	56	51	+5	67	58	+9	
Average	60	59	+1	69	65	+4	

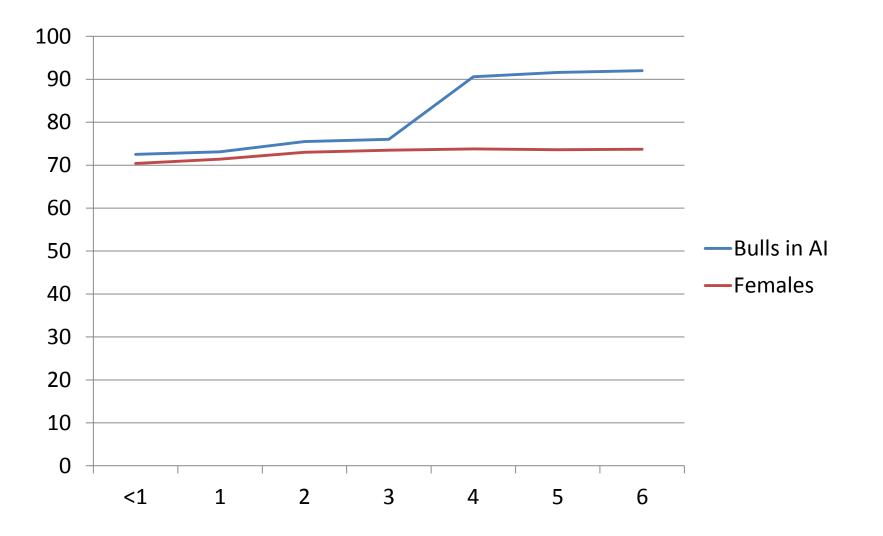
Discussion of BSW results

- Same software used by USA and Intergenomics
- Same data except PA in USA vs. Pedigree Index in IG
 - Bias from dam's PTA and extra weight on PA
 - Yield heritability reduced from 35% to 23% in Dec 2014
- Small test used only 41 bulls with > 50 US daughters
- Full test with all 475 IG bulls gave observed REL much more similar because USA and IG both have only PI for foreign MACE bulls

Phenotypic update frequency

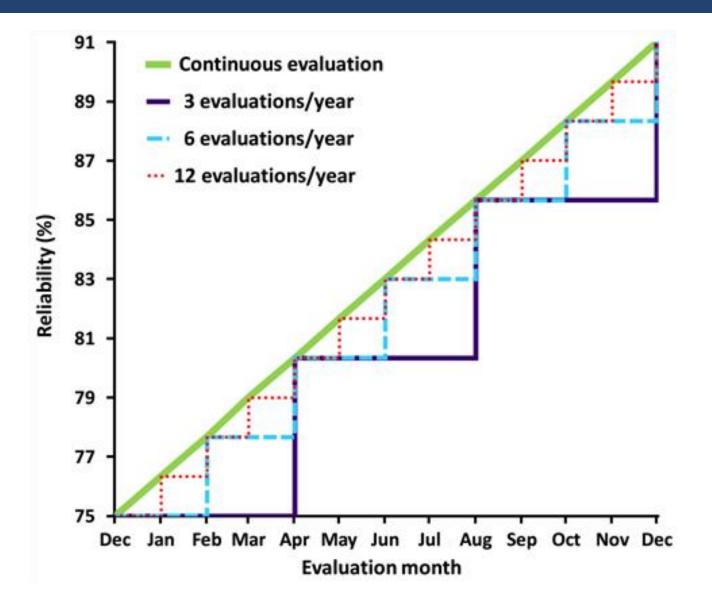
- Suppose reliability increases steadily from REL₁ to REL₂ across a year.
- The gain in reliability from n updates per year (REL_n) instead of 1 annual update should average:
- $REL_n = .5 (REL_2 REL_1) (n 1) / n$
- Suppose bulls increase from 75% REL₁ to 91% REL₂ when 4 years old (no daughters to many daughters).
- Minimum gain is 0% with an annual update because the bulls would stay at 75% for the whole year.
- Maximum gain is 8% with instant updating. Bulls would average (75 + 91)/2 = 83% during that year.

HOL NM\$ average reliability by age



Interbull annual meeting, Auckland, New Zealand, 2018 (10)

Phenotypic update frequency



Reliability gains by update frequency

Frequency	Updates	Young REL	Marginal Gain	Proven REL	Marginal Gain
Annual	1	73.0		75.0	
6 months	2	73.5	0.5	79.0	4.0
4 months	3	73.7	0.2	80.3	1.3
3 months	4	73.8	0.1	81.0	0.7
2 months	6	73.83	0.03	81.6	0.6
Monthly	12	73.92	0.09	82.3	0.7
Weekly	52	73.98	0.06	82.8	0.5
Daily	365	73.99	0.01	82.97	0.17
Instant	∞	74.0	0.01	83.0	0.03

Assuming that REL begins at 75% and is 91% 1 year later for proven bulls and begins at 73% and is 75% 1 year later for young bulls.

- Exact calculation of genomic reliability is hard, but validation is easy
- Published USA REL averaged 2% too high for HOL, 3% too low for JER, and 1% too low for BSW
- Published Intergenomics REL averaged 4% too low for BSW traits because observed REL were higher
- Updating marker effects more frequently than 3 times per year could improve average REL up to 2.5% for recently proven bulls but < 0.3% for young animals

Acknowledgements

- Interbull Working Group on Genomic Reliability (Zengting Liu, Martin Lidauer, Mario Calus, Vincent Ducrocq, Haifa Benhajali, and Hossein Jorjani)
- Council on Dairy Cattle Breeding and Intergenomics for data
- Suzanne Hubbard for graphs
- USDA-ARS project 1265-31000-101-00, "Improving Genetic Predictions in Dairy Animals Using Phenotypic and Genomic Information"

Validation of genomic reliability and gains from phenotypic updates

Paul VanRaden and Jeff O'Connell*

Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA, Beltsville, MD *University of Maryland-Baltimore paul.vanraden@ars.usda.gov

Topics

- Methods to compute genomic reliability
 - Summarized by Liu et al (2017)
 - GREL compared by Sullivan and Jakobsen (2014)
- Simple validation of genomic reliability
 - Do actual EBV changes agree with published REL?
 - Examples from USA and Intergenomics
- Gains in reliability from more frequent updates
 - Similar math can determine the value of re-estimating marker effects more often

REL calculation vs. validation

• REL estimation

- Adjust theoretical REL such as from SNP-BLUP-REL or from size of reference population
- Use prediction error variance (PEV) because correlations are biased downward by selection
- REL validation
 - Similar to validating EBVs using truncated data
 - Examine published REL for 6 traits and Net Merit
 - Examine 3 breeds (HOL, JER, BSW) on USA scale

Genomic reliability theory

- Selection reduces variance such that Var(EBV) < REL * Var(BV), but not prediction error variances (PEV):
- PEV = Var(EBV BV) = (1 REL) Var(BV)
- Variance of EBV differences are proportional to the difference in reliabilities regardless of selection. If EBV₁ and EBV₂ are earlier and later genomic evaluations with reliabilities REL₁ and REL₂, then
- $Var(EBV_2 EBV_1) = (REL_2 REL_1) Var(BV)$
- If REL₂ is known, high, and accurate, then solve for
- $REL_1 = REL_2 Var(EBV_2 EBV_1) / Var(BV)$

Data to validate genomic reliability

- Published genomic evaluations from April 2014
- Published genomic evaluations from April 2017
- SD of difference in genomic PTAs
- REML estimates of true TA SD from Interbull MACE
- Example for Holstein protein validation bulls:
- Average published REL₁ was 0.76, REL₂ was 0.95, SD of change was 8.4, and REML TA SD was 17.5. The observed REL₁ for protein was calculated as
- Observed $REL_1 = 0.95 (8.4)^2 / (17.5)^2 = 0.72$

Observed vs. published reliability, 2014

Trait	Observed	Published	Diff	Observed	Published	Diff	
	Jerseys			Holsteins			
Milk	73	68	+5	72	76	-4	
Fat	72	68	+4	74	76	-2	
Protein	71	68	+3	72	76	-4	
Longevity	47	55	-8	65	70	-5	
SCS	64	62	+2	77	73	+4	
Preg Rate	63	52	+11	69	68	+1	
NetMerit	68	64	+4	68	73	-5	
Average	65	62	+3	71	73	-2	

Observed vs. published reliability, BSW

Trait	Observed	Published	Diff	Observed	Published	Diff	
	Brown Swiss - USA			BSW - Intergenomics			
Milk	62	63	-1	70	68	+2	
Fat	64	63	+1	76	68	+8	
Protein	57	63	-6	66	68	-2	
Longevity	57	55	+2	63	61	+2	
SCS	64	59	+6	71	66	+5	
Preg Rate	56	51	+5	67	58	+9	
Average	60	59	+1	69	65	+4	

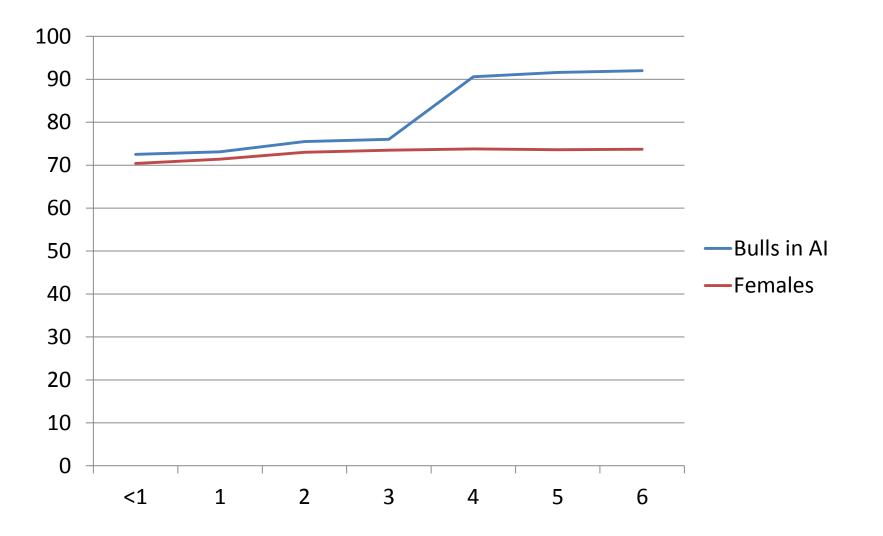
Discussion of BSW results

- Same software used by USA and Intergenomics
- Same data except PA in USA vs. Pedigree Index in IG
 - Bias from dam's PTA and extra weight on PA
 - Yield heritability reduced from 35% to 23% in Dec 2014
- Small test used only 41 bulls with > 50 US daughters
- Full test with all 475 IG bulls gave observed REL much more similar because USA and IG both have only PI for foreign MACE bulls

Phenotypic update frequency

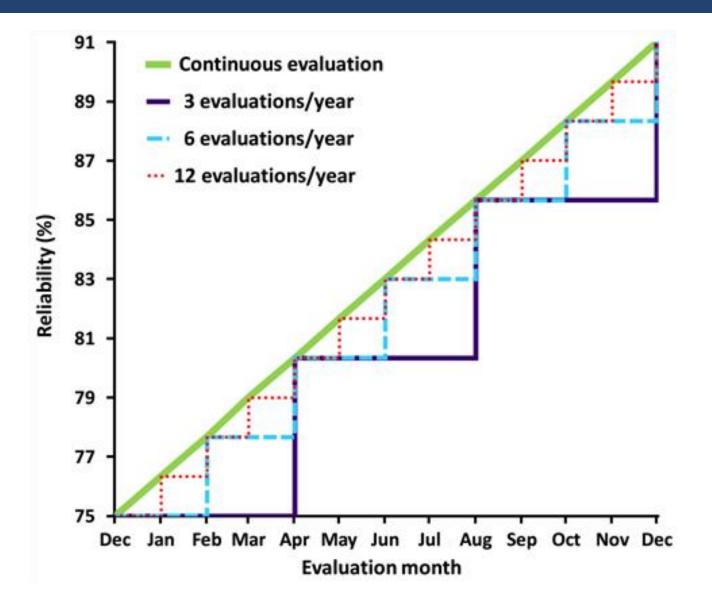
- Suppose reliability increases steadily from REL₁ to REL₂ across a year.
- The gain in reliability from n updates per year (REL_n) instead of 1 annual update should average:
- $REL_n = .5 (REL_2 REL_1) (n 1) / n$
- Suppose bulls increase from 75% REL₁ to 91% REL₂ when 4 years old (no daughters to many daughters).
- Minimum gain is 0% with an annual update because the bulls would stay at 75% for the whole year.
- Maximum gain is 8% with instant updating. Bulls would average (75 + 91)/2 = 83% during that year.

HOL NM\$ average reliability by age



Interbull annual meeting, Auckland, New Zealand, 2018 (10)

Phenotypic update frequency



Reliability gains by update frequency

Frequency	Updates	Young REL	Marginal Gain	Proven REL	Marginal Gain
Annual	1	73.0		75.0	
6 months	2	73.5	0.5	79.0	4.0
4 months	3	73.7	0.2	80.3	1.3
3 months	4	73.8	0.1	81.0	0.7
2 months	6	73.83	0.03	81.6	0.6
Monthly	12	73.92	0.09	82.3	0.7
Weekly	52	73.98	0.06	82.8	0.5
Daily	365	73.99	0.01	82.97	0.17
Instant	∞	74.0	0.01	83.0	0.03

Assuming that REL begins at 75% and is 91% 1 year later for proven bulls and begins at 73% and is 75% 1 year later for young bulls.

- Exact calculation of genomic reliability is hard, but validation is easy
- Published USA REL averaged 2% too high for HOL, 3% too low for JER, and 1% too low for BSW
- Published Intergenomics REL averaged 4% too low for BSW traits because observed REL were higher
- Updating marker effects more frequently than 3 times per year could improve average REL up to 2.5% for recently proven bulls but < 0.3% for young animals

Acknowledgements

- Interbull Working Group on Genomic Reliability (Zengting Liu, Martin Lidauer, Mario Calus, Vincent Ducrocq, Haifa Benhajali, and Hossein Jorjani)
- Council on Dairy Cattle Breeding and Intergenomics for data
- Suzanne Hubbard for graphs
- USDA-ARS project 1265-31000-101-00, "Improving Genetic Predictions in Dairy Animals Using Phenotypic and Genomic Information"

Genomic reliability algorithm for a single step marker model

Bevin Harris LIC, New Zealand

Outline

- Brief method outline
- Multi-breed adjustments
- Computational feasibility
- Results for 2 traits and 2 SNP panels
- Conclusions

Method Outline

- 1. Build SNP marker MME and invert
- 2. Compute reliability for the genotyped animals and adjust for prediction R² : Rel_g
- 3. Compute reliability from using information source (IS) method:
 - 1. using only phenotypes of genotyped animals Relag
 - 2. using only phenotypes of non-genotyped animals: Relug
 - 3. using all phenotypes when fitting a polygenic effect: Rel_a

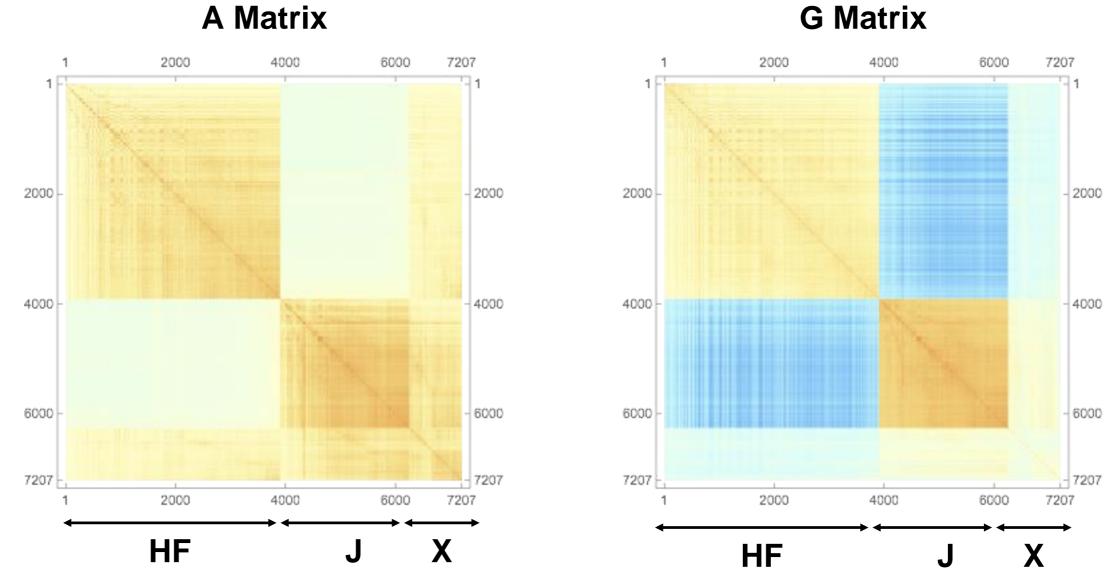
Method Outline

- 4. Compute reliability from genomics (Rel_q) over and above pedigree and propagate through the entire pedigree (without updating the genotyped animals): Rel_{gg}
- 5. Compute total reliability (Relt)
 - Genotyped animals: Combine Relg and Relug
 - 2. Non-genotyped animals: Combine Rel_{gg} and Rel_a
- 6. If fitting an polygenic effect in the model weight Rel_t and Rel_a by the proportions of total genetic variance assigned to the marker and polygenic effect

Multiple breeds

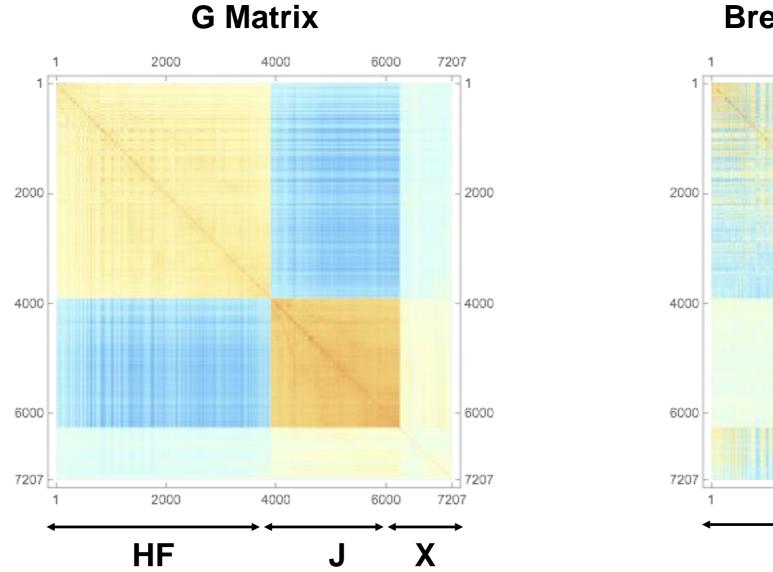
- New Zealand
 - Mixture of Holstein Friesian, Jersey and crossbred animals (HFxJ)
 - SNP allele frequencies differ between the Holstein Friesian and Jersey breeds
 - Potentially impact the SNP marker reliability calculations

- 7207 Sires with 3902 HF, 2356 J and 949 HFxJ
- 50k SNP panel (35k SNP)

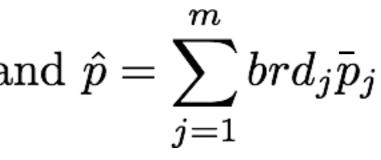


G Matrix

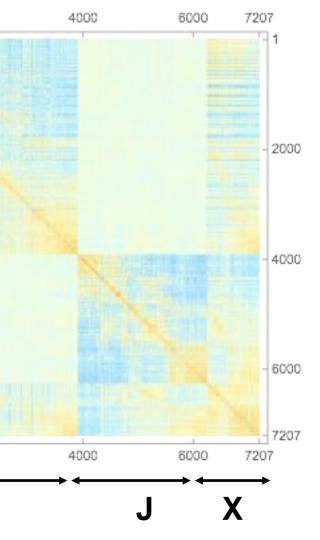
• Compute Z as $(\mathbf{M}_i - 2\hat{p})/\hat{\omega}$ where $\hat{\omega} = \sqrt{2\Sigma\hat{p}(1-\hat{p})}$ and $\hat{p} = \sum brd_j\bar{p}_j$



2000



Breed Adjusted G Matrix



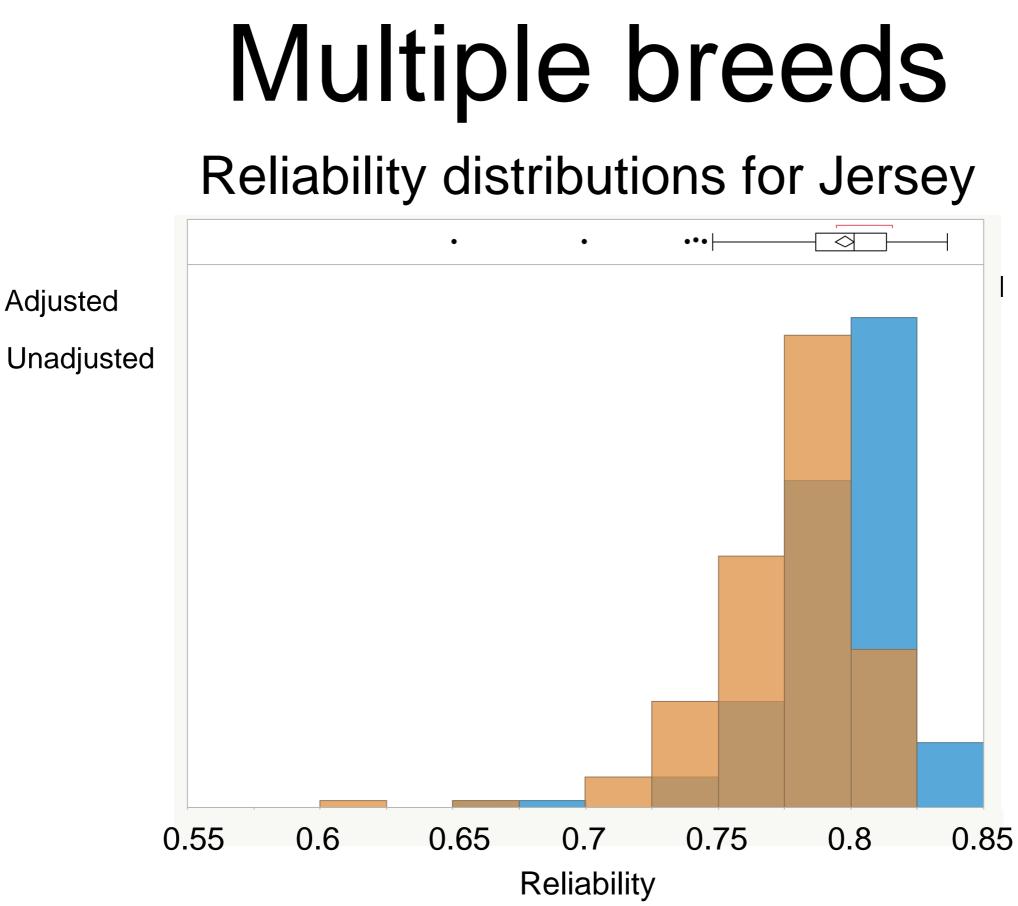
Examples

- New Zealand national population 29m animals
 - Dataset 1: 35K SNP on 140K animals
 - Dataset 2: 24K SNP on 70K animals (genotypes up to 2015)
 - 2 Traits
 - Liveweight $h^2 = 0.35$, 1.9m records
 - Fertility $h^2 = 0.025$, 16.4m records
 - Prediction R² adjustment was set to 0.85

- Results of breed adjustments on SNP reliability for live weight
 - Last three sire birth year cohorts with no daughters
 - Similar results observed for fertility

		35k SN	35k SNP and 140K N	
Young Sires	A Matrix	SNP	SNP breed a	
Holstein Friesian	0.34	0.73	0.73	
Jersey	0.37	0.80	0.77	
HF x J	0.34	0.75	0.75	

adjusted



Computation Time

	35K SNP 140K Genotypes	70k
Breed Adjustment	19m:12s	
SNP Reliability	61m:39s	
Reliability all animals	0m:58s	
Total	81m:41s	

24k SNP K Genotypes

6m:16s

15m:40s

0m:55s

22m:51s

Computation Time 24 Cores Simultaneously

- SNP Reliability
 - Inverse of SNP equations
 - Direct computation of the individual animal reliabilities from the SNP $(\mathbf{Z}\mathbf{C}^{22}\mathbf{Z}')_{ii}$
 - Iterative computation of the individual animal reliabilities from the SNP $\mathbf{z}_i \mathbf{C}^{22} \mathbf{z}'_i$

35k SNP 140k N	24k SNP 70k N
4m:10s	1m:24s
44m33s	10m:17s
106m15c	20m-55c

106m15S 29m:55S

Results Liveweight

		35K SNP 140K N
Proven Sires	A Matrix	0.85
	Genomic	0.88
Young Sires	A Matrix	0.34
	Genomic	0.62

24k SNP 70K N

0.85

0.87

0.34

0.42

Results Fertility

		35K SNP 140K N
Drovop Siroc	A Matrix	0.56
Proven Sires	Genomic	0.61
Young Sires	A Matrix	0.28
	Genomic	0.39

24k SNP 70K N

0.56

0.62

0.28

0.34

- Method is computational feasible for our national data set
 - For very large numbers of genotyped animals computing in individual reliabilities $(\mathbf{Z}\mathbf{C}^{22}\mathbf{Z}')_{ii}$ from the marker model inversion may be problematic

 In multi-breed genomic analysis adjusting the SNPs for breed mean and variance appears to be useful in avoiding reliability discrepancies caused by breed SNP frequency differences

- The method provides sensible reliabilities for the examples provided for this talk
- The method provides a way to incorporate genomic reliabilities for non-genotyped animals

Post-Doc Position available at Livestock Improvement NZ in genomic evaluation

See the App In the positions tab for more details

Genomic reliability algorithm for a single step marker model

Bevin Harris LIC, New Zealand

Outline

- Brief method outline
- Multi-breed adjustments
- Computational feasibility
- Results for 2 traits and 2 SNP panels
- Conclusions

Method Outline

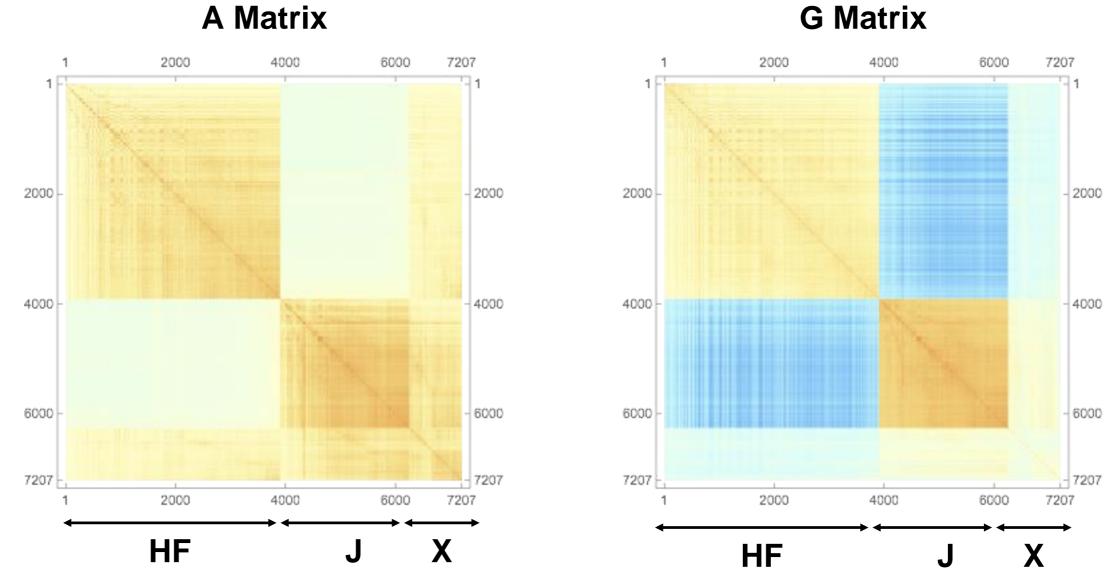
- 1. Build SNP marker MME and invert
- 2. Compute reliability for the genotyped animals and adjust for prediction R² : Rel_g
- 3. Compute reliability from using information source (IS) method:
 - 1. using only phenotypes of genotyped animals Relag
 - 2. using only phenotypes of non-genotyped animals: Relug
 - 3. using all phenotypes when fitting a polygenic effect: Rel_a

Method Outline

- 4. Compute reliability from genomics (Rel_q) over and above pedigree and propagate through the entire pedigree (without updating the genotyped animals): Rel_{gg}
- 5. Compute total reliability (Relt)
 - Genotyped animals: Combine Relg and Relug
 - 2. Non-genotyped animals: Combine Rel_{gg} and Rel_a
- 6. If fitting an polygenic effect in the model weight Rel_t and Rel_a by the proportions of total genetic variance assigned to the marker and polygenic effect

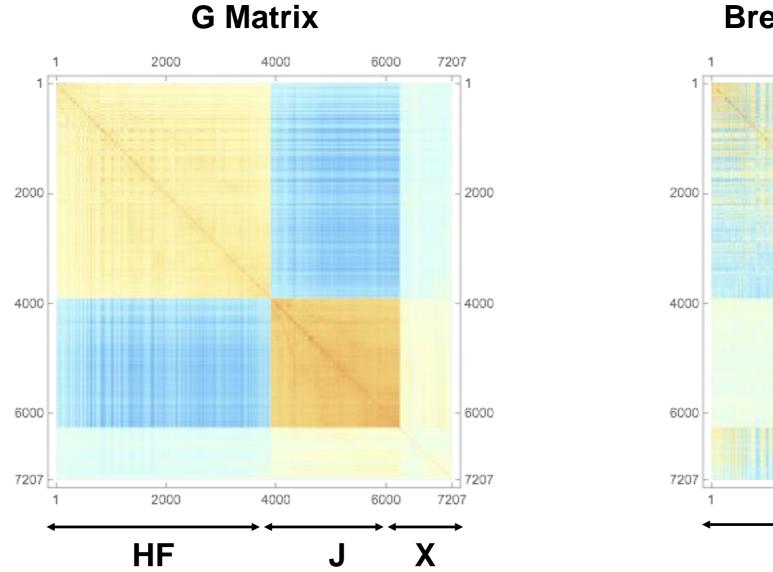
- New Zealand
 - Mixture of Holstein Friesian, Jersey and crossbred animals (HFxJ)
 - SNP allele frequencies differ between the Holstein Friesian and Jersey breeds
 - Potentially impact the SNP marker reliability calculations

- 7207 Sires with 3902 HF, 2356 J and 949 HFxJ
- 50k SNP panel (35k SNP)

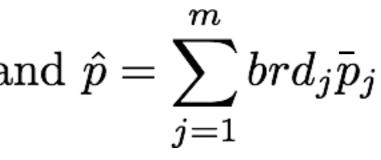


G Matrix

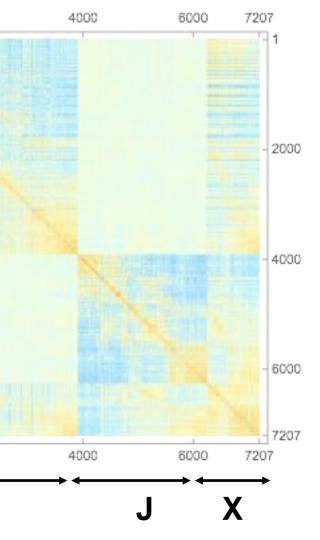
• Compute Z as $(\mathbf{M}_i - 2\hat{p})/\hat{\omega}$ where $\hat{\omega} = \sqrt{2\Sigma\hat{p}(1-\hat{p})}$ and $\hat{p} = \sum brd_j\bar{p}_j$



2000



Breed Adjusted G Matrix



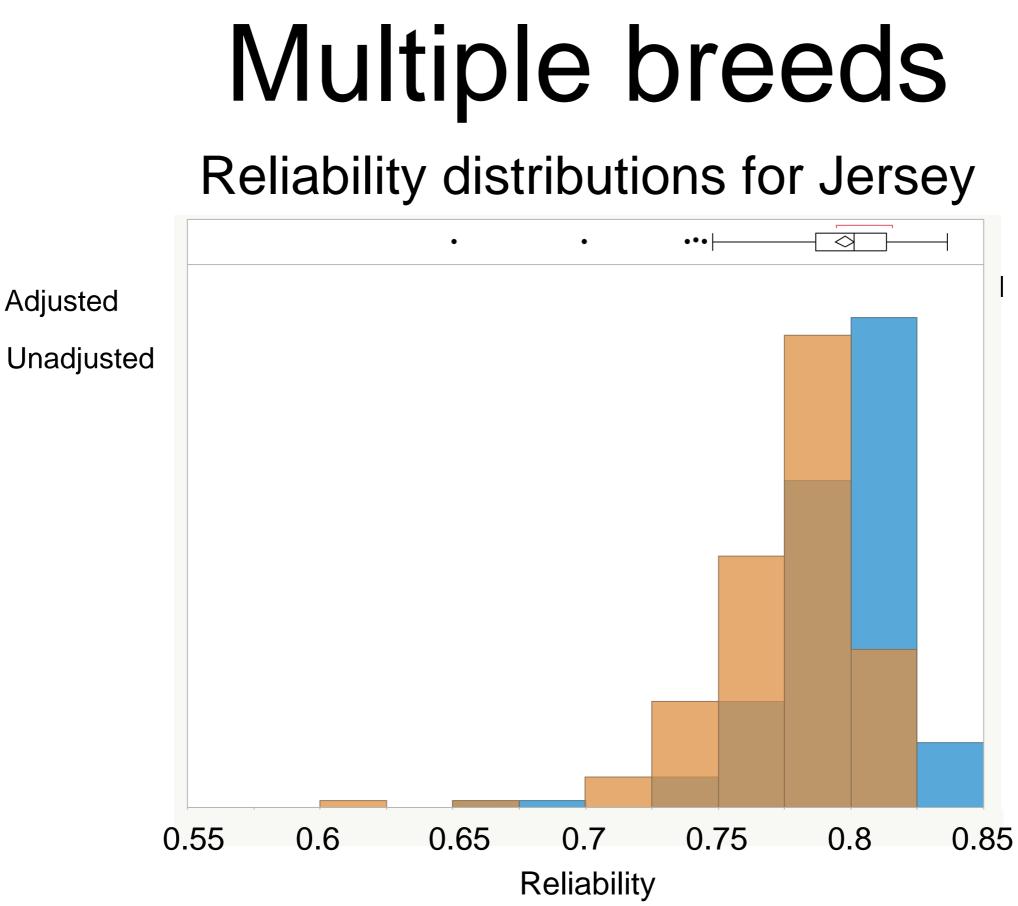
Examples

- New Zealand national population 29m animals
 - Dataset 1: 35K SNP on 140K animals
 - Dataset 2: 24K SNP on 70K animals (genotypes up to 2015)
 - 2 Traits
 - Liveweight $h^2 = 0.35$, 1.9m records
 - Fertility $h^2 = 0.025$, 16.4m records
 - Prediction R² adjustment was set to 0.85

- Results of breed adjustments on SNP reliability for live weight
 - Last three sire birth year cohorts with no daughters
 - Similar results observed for fertility

		35k SN	35k SNP and 140K N	
Young Sires	A Matrix	SNP	SNP breed a	
Holstein Friesian	0.34	0.73	0.73	
Jersey	0.37	0.80	0.77	
HF x J	0.34	0.75	0.75	

adjusted



Computation Time

	35K SNP 140K Genotypes	70k
Breed Adjustment	19m:12s	
SNP Reliability	61m:39s	
Reliability all animals	0m:58s	
Total	81m:41s	

24k SNP K Genotypes

6m:16s

15m:40s

0m:55s

22m:51s

Computation Time 24 Cores Simultaneously

- SNP Reliability
 - Inverse of SNP equations
 - Direct computation of the individual animal reliabilities from the SNP $(\mathbf{Z}\mathbf{C}^{22}\mathbf{Z}')_{ii}$
 - Iterative computation of the individual animal reliabilities from the SNP $\mathbf{z}_i \mathbf{C}^{22} \mathbf{z}'_i$

35k SNP 140k N	24k SNP 70k N
4m:10s	1m:24s
44m33s	10m:17s
106m15c	20m-55c

106m15S 29m:55S

Results Liveweight

		35K SNP 140K N
Proven Sires	A Matrix	0.85
	Genomic	0.88
Young Sires	A Matrix	0.34
	Genomic	0.62

24k SNP 70K N

0.85

0.87

0.34

0.42

Results Fertility

		35K SNP 140K N
Drovop Siroc	A Matrix	0.56
Proven Sires	Genomic	0.61
Young Sires	A Matrix	0.28
	Genomic	0.39

24k SNP 70K N

0.56

0.62

0.28

0.34

- Method is computational feasible for our national data set
 - For very large numbers of genotyped animals computing in individual reliabilities $(\mathbf{Z}\mathbf{C}^{22}\mathbf{Z}')_{ii}$ from the marker model inversion may be problematic

 In multi-breed genomic analysis adjusting the SNPs for breed mean and variance appears to be useful in avoiding reliability discrepancies caused by breed SNP frequency differences

- The method provides sensible reliabilities for the examples provided for this talk
- The method provides a way to incorporate genomic reliabilities for non-genotyped animals

Post-Doc Position available at Livestock Improvement NZ in genomic evaluation

See the App In the positions tab for more details

Integration of foreign estimates of SNP effects into a domestic SNPBLUP

J. Vandenplas, M.P.L. Calus, G. Gorjanc

Introduction

Genomic evaluation

• Aim: more accurate genomic EBVs

- SNP-based evaluations under study/testing
- →Future: exchange of estimates of SNP effects?
- → How to integrate them into SNPBLUP?

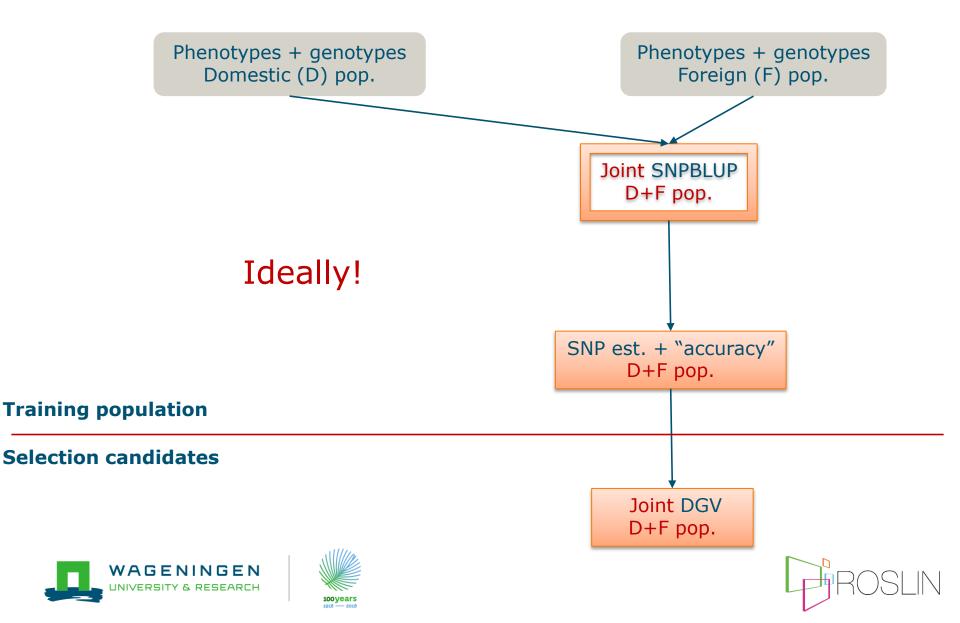
Developing and testing procedures to integrate

estimates of SNP effects and measures of precision

from a foreign SNPBLUP

into a domestic SNPBLUP

Methods – joint SNPBLUP

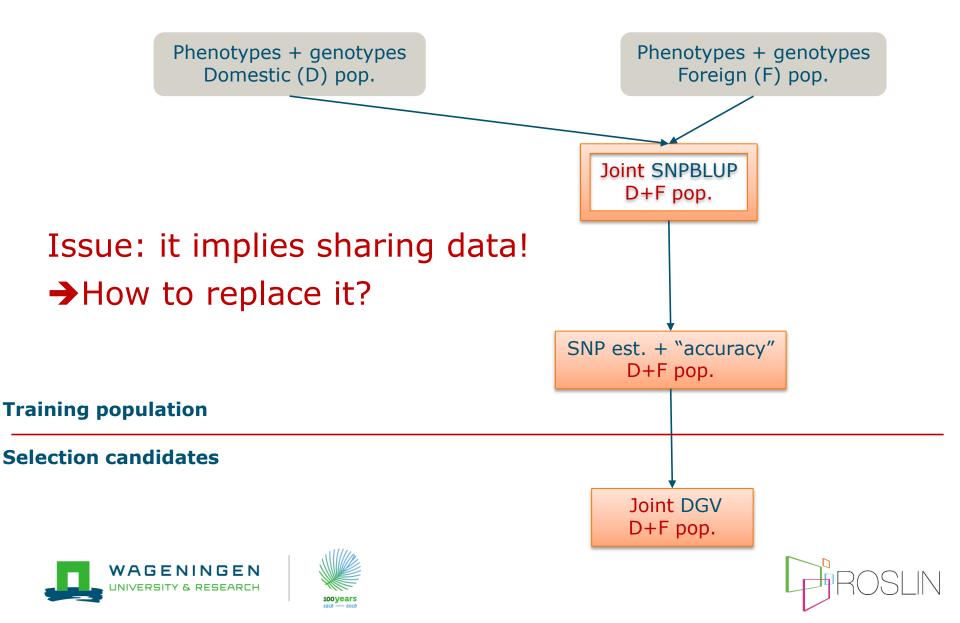


Methods – joint SNPBLUP

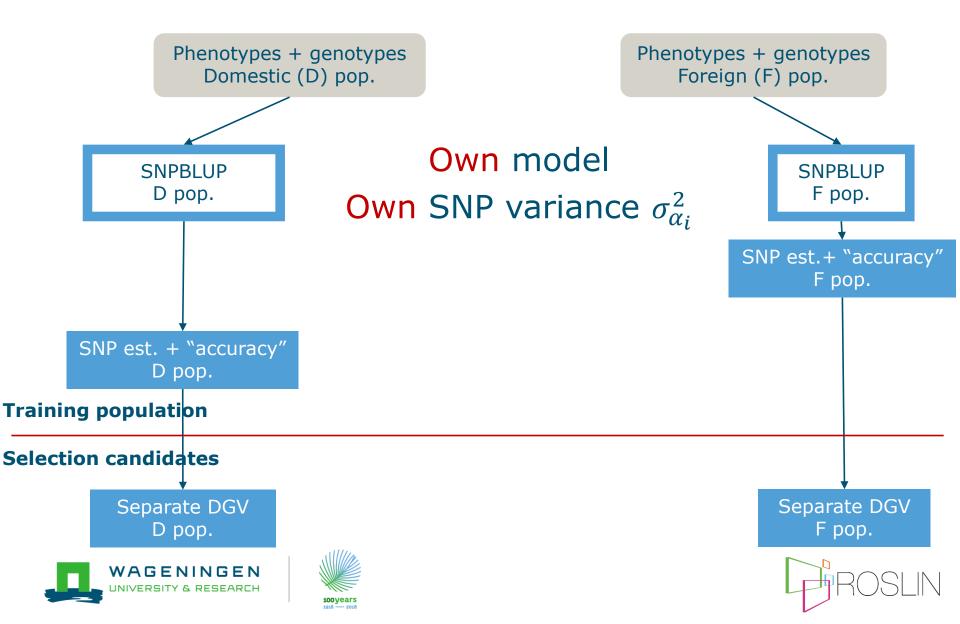
$$\begin{bmatrix} \mathbf{y}_{d} \\ \mathbf{y}_{f} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{d} & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{f} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_{d} \\ \boldsymbol{\beta}_{f} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{d} & \mathbf{W}_{d} \\ \mathbf{Z}_{f} & \mathbf{W}_{f} \end{bmatrix} \boldsymbol{\alpha} + \begin{bmatrix} \mathbf{e}_{d} \\ \mathbf{e}_{f} \end{bmatrix}$$
$$\boldsymbol{\alpha} \sim MVN \left(\mathbf{0}, \mathbf{I}\sigma_{\alpha_{J}}^{2} \right) \qquad \begin{bmatrix} \mathbf{e}_{d} \\ \mathbf{e}_{f} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{R}_{d} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_{f} \end{bmatrix} \sigma_{e}^{2} \right)$$

- **y**_i = vector of phenotypes
- β_i = vector of fixed effects
- α_i = vector of SNP effects
- **e**_i = vector of residuals
- **W**_i = matrix of SNP genotypes
- \mathbf{X}_i , \mathbf{Z}_i = incidence matrices

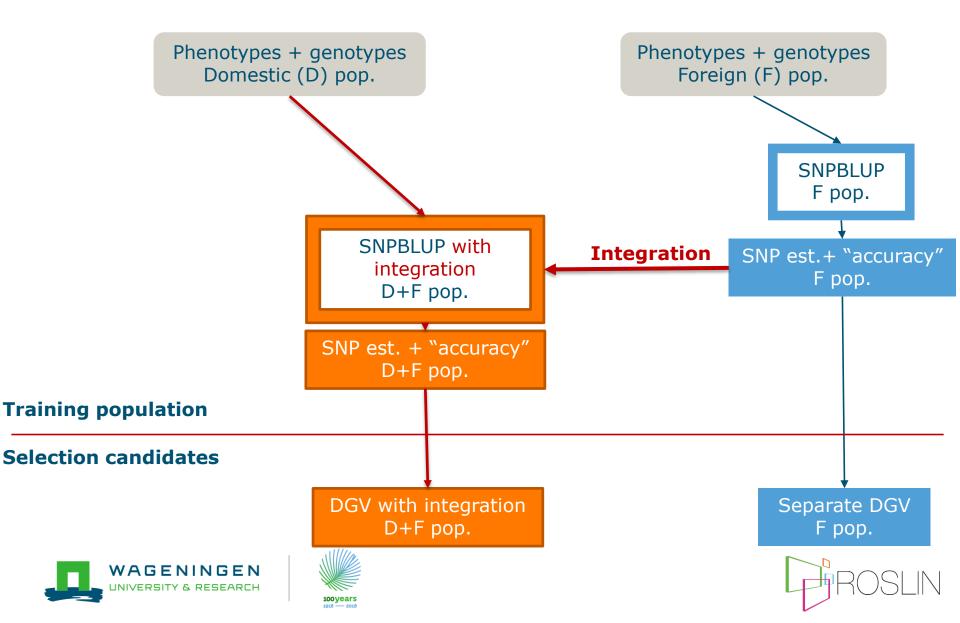
Methods – joint SNPBLUP



Methods – separate SNPBLUP



Methods – SNPBLUP with integration



Methods – SNPBLUP with integration

Assumptions

- Same model/variances ($\sigma_e^2 \& \sigma_{\alpha_I}^2$) as joint SNPBLUP
- Same genotype (scaling) across all SNPBLUP

Methods – SNPBLUP with integration

→ Several ways to approximate $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha}_{f})\right)^{-1}$

1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha}_{f})\right)^{-1}$

- 1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$
- 2) $\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(PEC(\widehat{\boldsymbol{\alpha}_f})_{within_chromosome}\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

- 1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$
- 2) $\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(PEC(\widehat{\boldsymbol{\alpha}_f})_{within_chromosome}\right)^{-1}$
- 3) $\left(PEC(\widehat{\alpha_f})\right)^{-1} \approx \left(PEV(\widehat{\alpha_f})\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

- 1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$
- 2) $\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(PEC(\widehat{\boldsymbol{\alpha}_f})_{within_chromosome}\right)^{-1}$
- 3) $\left(PEC(\widehat{\alpha_f})\right)^{-1} \approx \left(PEV(\widehat{\alpha_f})\right)^{-1}$

4)
$$\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(\boldsymbol{\Lambda}_f\left(f(\mathbf{L}\mathbf{D}_f,\mathbf{p})\right)\boldsymbol{\Lambda}_f\sigma_e^{-2} + \mathbf{I}\sigma_{\alpha_f}^{-2}\right)$$

p : allele frequencies in the training set
 LD_f computed from foreign selection candidates
 Λ_f : effective number of records per SNP

 Estimated from PEV(\$\hat{\alpha_f}\$)\$, **LD**_f, and **p**

Simulation

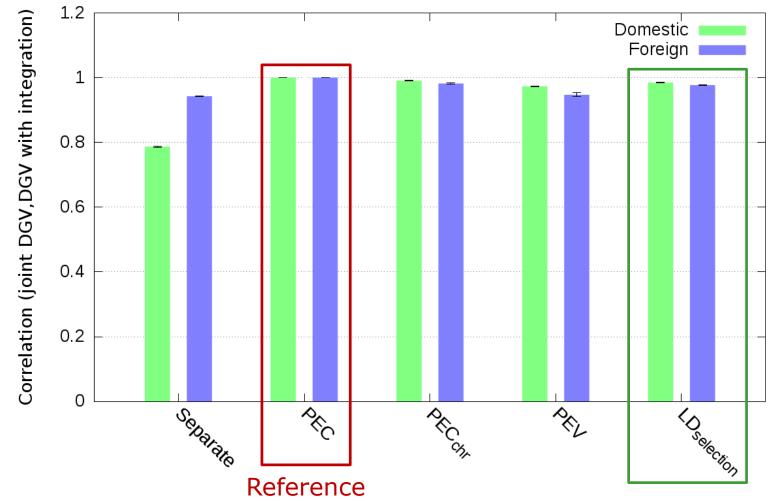
2 Holstein-like populations

• 1 trait (h² = 0.30 - 60K SNPs)

Training populations

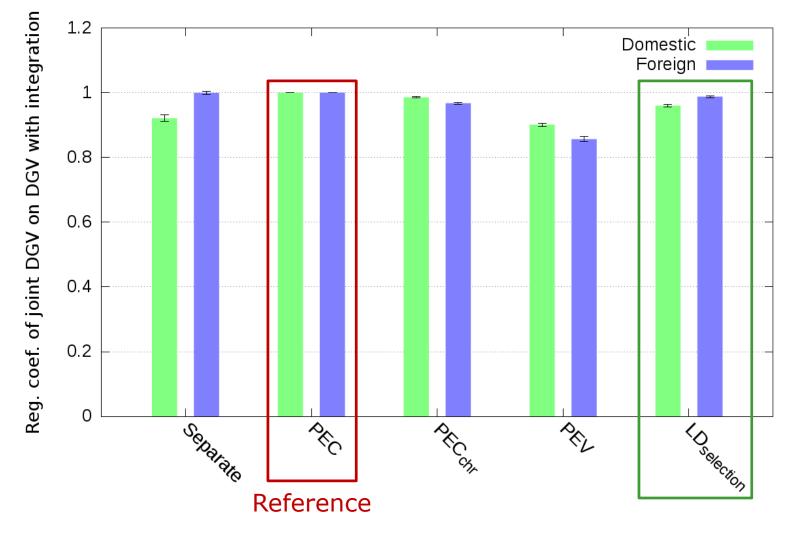
- 5,000 animals / population
- Randomly sampled from gen. 1 to 6
- Domestic: own performance records
- Foreign: pseudo-records (~DYD, DRP) + weights
- Selection candidates
 - 10,000 animals from gen. 7 / population

Results – correlations



- Accurate integration
 - Even with only PEV and LD information

Results – bias



Almost no bias, except for PEV

Conclusions

Accurate integration of estimates of SNP effects

- Without exchanging genotypes/phenotypes
- Procedure similar to integration of foreign EBVs
 Similar assumptions/issues/solutions
- Easy extensions
 - Multiple populations, multiple traits, ...
 - Special case: SNP-MACE

STATES OF STATES

Thank you!

