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• In Canada, around 25-30% of cows have at least one 
hoof lesion

• Hoof lesions compromise animal welfare

• Economic loss, costs associated with: 

– Treatment of lesions

– Decreased cow performance
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• Improving management practices at herd level

• Through genetic selection

2



• Project funded by the Dairy Research Cluster 2

– Dairy Farmers of Canada, Agriculture and Agri-Food 
Canada, CDN, Canadian Dairy Commission

• Principal investigator: Dr. Filippo Miglior 
(Canadian Dairy Network & University of Guelph)

• 2014-2017
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Improve hoof health in Canada
1. Centralize data collected by hoof trimmers into a 

coherent and sustainable national data base
– Standardize the hoof lesion data

– Develop a data pipeline: Hoof trimmers - CDHI - CDN

2. Develop a DHI management report for producers

3. Develop genomic evaluations for hoof health
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• Standardize the hoof lesion data collection

• Develop a data pipeline
Hoof trimmers - Canadian DHI - Canadian Dairy Network

• Develop a DHI management report for producers 

• Develop genomic evaluations for hoof health
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– Codes of lesion

– Severity 

– Claws

– Zones 
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• 54 trimmers across Canada now routinely provide 
hoof health data to Canadian DHI

• Additional trimmers invited to participate to the data 
collection 
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• Standardize the hoof lesion data collection

• Develop a data pipeline
Hoof trimmers - Canadian DHI - Canadian Dairy Network

• Develop a DHI management report for producers 

• Develop genomic evaluations for hoof health
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• Standardize the hoof lesion data collection 

• Develop a data pipeline
Hoof trimmers - Canadian DHI - Canadian Dairy Network

• Develop a DHI management report for producers 

• Develop genomic evaluations for hoof health
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• Working group with hoof trimmers, dairy advisors, 
veterinarians and researchers
– To develop a new DHI management report on hoof health

• This report may include
– Prevalence of lesions on farm

– Trends over time

– Benchmarks with province and national averages

• Added value for trimmers and dairy producers
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• Standardize the hoof lesion data

• Develop a data pipeline
Hoof trimmers - Canadian DHI - Canadian Dairy Network

• Develop a DHI management report for 
producers 

• Develop genomic evaluations for hoof health
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• Historical data from provincial projects up to 2012

• New pipeline data 

– From summer 2015 for Quebec

– From early 2016 Ontario

– From mid 2016 for newly recruited trimmers

• Historical data from hoof trimmers
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• Heritability and Repeatability of hoof lesions 

• Effect of pre-selection of cows for trimming

• Correlations with conformation traits

• Severity vs. Binary

• Threshold vs. Linear Model

• Single-step GBLUP
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• 307,172 records

• 127,729 cows 

• 8,293 sires 

• 332,561- animals in pedigree (4 generations)
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Aim is 10-20% of milk recorded cows



• Single-trait (no indicators)

• Animal  linear model with repeated observations (0/1)

• Single-step GBLUP using Mix99

• Environmental factors:
– Herd-Trimming Session

– Trimmer

– Days after calving

– Parity

– Cow effect (PE)
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• Genetic parameters:
– Heritability: 0.08
– Repeatability: 0.20

• Reference population (animals):
– All genotyped sires and cows that are in the pedigree

• Single-step: 19,459 animals
– 5,268 sires
– 7,178 cows 
– 7,013 cows with data
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For bulls only:

• Genomic Estimated Breeding Values and Reliabilities

• Like all CDN functional traits, evaluations expressed as 
Relative Breeding Values (RBV):

– mean = 100 SD = 5 for base sires 

– reversed in sign: higher RBV indicate better resistance to 
Digital Dermatitis
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• Digital Dermatitis proof of a sire official when:

– Minimum 5 herds 

– Minimum reliability of  70%  
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Bulls
Proof % Healthy Records

Mean SD Min Max Mean SD Min Max

Bottom 10 82 2.0 77 84 61 14.1 33 86

Top 10 114 1.7 112 117 93 7.3 80 100
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• Hoof trimmers willing to share data and to develop a 
standard recording protocol identified across Canada

• Routine flow of hoof lesion data from hoof trimmers 
to Canadian DHI and to Canadian Dairy Network 

• Genomic evaluations for Digital Dermatitis from 
December 2017

• Soon DHI herd management report for Hoof Health
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Supported by a contribution from the Dairy Research 

Cluster Initiative (Dairy Farmers of Canada, Agriculture and 

Agri‐Food Canada, the Canadian Dairy Network and the 

Canadian Dairy Commission) and by Ontario Genomics

http://www.dairyresearchblog.ca/
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Traits 
Rear side rear 

view

Feet

& Legs
Locomotion

Digital Dermatitis -0.28 -0.24 -0.45
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Evaluation of Claw Health 

Traits in Spanish Dairy Cattle
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Why Claw health?

Interbull Annual Meeting, Auckland, New Zealand 2018

Claw disorders are one of 
the main causes of 

involuntary culling in 
Spanish dairy herds

1.- Fertility

2.- Mastitis

3.- Claw lesions

Early Culling

Animal 
Welfare

↓Feed and 
water access

↓Comfort

↗Pain

Productivity

↓Yield 
production

↓Milk quality

↓Productive life 

Fertility

↑Anestrus period

↓Conception 
rate

↑Days open

Claw disorders are responsible for most lameness cases
which compromise:

Feet & legs type traits fail in improving claw health 

211/2/2018



- CONAFE provides:

- A tactile PC-tablet

- An electronic friendly application called DATPAT

- An access to the national database 

- Herd reports and animal information

- Training courses

- Trimmers should: 

- Register at least 2,000 records per year during 
trimming routine visits.

Interbull Annual Meeting, Auckland, New Zealand 2018
3

Claw Health Recording

In 2012 was launched the Spanish program 
for recording claw health data in order to 
prevent and to control lameness

Win-Win Agreement

11/2/2018



Objectives

 Implementation of a routine genetic evaluation 
for claw health traits.

 Assessment of the accuracy of genomic proofs 
for claw disorders in Spanish dairy cattle.

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 4



Seven claw disorders are recorded:

Scoring for each lesion:
0 : Absence
1 : mild 
2 : severe 

Interbull Annual Meeting, Auckland, New Zealand 2018

Recorded claw disorders 

CD and CC are scored as 0/1

5
11/2/2018

Prevalence (%)

Dermatitis (DE) 10.07

Sole ulcer (SU) 11.37

White line disease (WL) 8.03

Interdigital hyperplasia (IH) 0.54

Interdigital phlegmon (IP) 0.95

Concave dorsal wall (CD) 1.50

Overall claw disorders 29.91

Corkscrew claws (CC) has being recorded since 2017



Interbull Annual Meeting, Auckland, New Zealand 2018

Evolution of Claw data

611/2/2018
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Data Editing 
Initial set of data: 628,228 records  from 2012 to 2017

( In 1821 herds by 46 trimmers)

Data selection:
 Records before 2013 were eliminated

 Parity 1 to 5

 Records from day 1 to day 500 after calving 

 Only trimmers with at least 2000 records/year

 At herd level: Only herd-year with at least 30% of present cows trimmed

Final set of data: 441,248 records (34 trimmers)

Non trimmed cows were included: 81,228 records

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 7



Genetic evaluation: Linear Models

 Claw disorders

 Herd-year-season

 Lactation-age

 Lactation stage

 Trimmer

 Permanent environmental effect 

 Additive animal effect

Interbull Annual Meeting, Auckland, New Zealand 2018 811/2/2018

 Type traits

 Herd-visit-classifier

 Lactation-age

 Lactation stage

 Additive animal effect

2 multi-trait animal analyses:
- Scenario 1: Only claw disorders
- Scenario 2: Claw disorders and feet and leg type traits

Mix99 Software 



Genomic evaluation: GBLUP with polygenic effect

• 2-step evaluation

• Polygenic effect: 30%

• 10-fold cross validation

• Mix99 software

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 9

Reference population: 1,317 bulls 



Genetic Parameters

F&L RLRV FA BQ LOC

Dermatitis -0.18 -0.20 0.23 -0.09 -0.25

Sole Ulcer -0.30 -0.10 0.15 -0.15 -0.31

White line disease -0.24 -0.09 -0.16 -0.30 -0.22

Concave dorsal wall -0.25 -0.12 -0.12 -0.02 -0.35

Interdigital phlegmon -0.26 -0.23 -0.11 -0.19 -0.32

Interdigital hyperplasia -0.11 -0.11 -0.04 -0.08 -0.11
11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 10

h2 r

Dermatitis 0.06 0.11

Sole Ulcer 0.06 0.11

White line disease 0.02 0.07

Concave dorsal wall 0.02 0.22

Interdigital phlegmon 0.01 0.03

Interdigital hyperplasia 0.13 0.07

h2

Feet & legs (F&L) 0.15
Rear legs rear view (RLRV) 0.13
Foot angle (FA) 0.09
Bone quality (BQ) 0.26
Locomotion (LOC) 0.12



Claw health index: ISP*

Economic weights for claw disorders.

Claw disorders €/cow/year

Dermatitis - 9.30

Sole Ulcer - 44.00

White line disease - 37.40

Concave dorsal wall - 4.52

Interdigital phlegmon - 3.55

Interdigital hyperplasia - 1.45

Interbull Annual Meeting, Auckland, New Zealand 2018 1111/2/2018

Dermatitis
12%

Sole ulcer
57%

White line 
disease

28%

Concave dorsal 
wall
1%

Interdigital 
phlegmon

1%

Interdigital 
hyperplasia

1%

ISP net profit: 4.10€/cow/year
*Iván Yánez (2017)



Proofs reliabilities

Interbull Annual Meeting, Auckland, New Zealand 2018 1211/2/2018

Bull with at least 20 daughters in 10 herds with Reliability ≥ 50%

Average reliabilities  (%) Scenario 1
Without type traits

Scenario 2  
With type traits

Rel gain (%)

Dermatitis 68 74 9%

Sole Ulcer 68 75 10%

White line disease 63 72 14%

Concave dorsal wall 63 68 8%

Interdigital phlegmon 50 66 32%

Interdigital hyperplasia 67 81 22%

ISP 66 74 12%



Correlations between EBVs with and without 
type traits

EBVs were standardized to relative breeding values with a mean 
of 100 and a standard deviation of 10 and reversed in sign

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 13

Pearson 
correlations

Spearman 
correlations

Dermatitis 0.98 0.97

Sole Ulcer 0.96 0.96

White line disease 0.91 0.90

Concave dorsal wall 0.92 0.90

Interdigital phlegmon 0.93 0.94

Interdigital hyperplasia 0.96 0.94

ISP 0.97 0.97



Genetic Trends

Interbull Annual Meeting, Auckland, New Zealand 2018 1411/2/2018
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Validation of Genomic proofs 

R2 bVALUE
(S.E.)

Dermatitis 0.19 0.72 (0.11)

Sole Ulcer 0.34 0.99 (0.08)

White line disease 0.27 0.94 (0.10)

Concave dorsal wall 0.35 0.94 (0.08)

Interdigital phlegmon 0.36 1.03 (0.08)

Interdigital hyperplasia 0.15 0.76 (0.15)

Interbull Annual Meeting, Auckland, New Zealand 2018 1511/2/2018

Results of 10-fold cross-validation



Conclusions and Next steps
 Despite the low heritabilities, large genetic variation 

between best and worst bulls is observed.

 The inclusion of feet and legs type traits in multi-trait 
analyses increased reliabilities of claw disorders EBVs.

 Accuracy of genomic proofs are low to moderate. 

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 16

Next Steps:

 March 2018: Interim release for breeding companies

 June 2018: first official release
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Estimation of the heritability of a newly developed

ketosis risk indicator and the genetic correlations to

other traits in three German cattle breeds

H. Hamann1, A. Werner2, L. Dale2, P. Herold1

1 State Office for Spatial Information and Land Development Baden-Württemberg, Germany
2 Association for Performance and Quality Testing Baden-Württemberg, Germany



KetoMIR index:

based on logistic regression

numeric range between 0 and 1

partition in three classes

„healthy“: 0.00 - 0.50

„low risk“: 0.50 - 0.75

„high risk“: 0.75 - 1.00

Calibration set Validation set

(n=109.479) (n=2.966)

Sensitivity: 0.70 0.72

Specificity 0.86 0.84

Goal and derivation of the KetoMIR index:

Slide 2, February, 11,  2018



Probability functions of the KetoMIR index

and derivaton of KetoMIR classes
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1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17

Weeks in milk

Fleckvieh (Dual 

purpose Simmental)

Braunvieh 

(German Brown)

Deutsch Holstein 

(German Holstein)

Distribution of KetoMIR classes for

breeds and weeks in milk

healthy

low risk

high risk
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Breeding strategies:

Selection against ketosis liability:

- based on a single (first) test day record (strategy I)

„breaking“ the peaks in the KetoMIR curve

- based on the average of several test day records (strategy II)

„lowering“ the general level of the KetoMIR curve

Slide 5, February, 11,  2018
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Genetic analyses:

Data:

Fleckvieh: 37.846

Braunvieh: 15.771

Deutsch Holstein: 31.425

lactations with information for the first three test

day records (analysed separately or as average)

Repeatability model (within breed):

HYS, lactation number, days in milk, permanent

environmental effect, animal effect

Slide 7, February, 11,  2018



Genetic analyses:

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk 

components

TD Fleckvieh Braunvieh Deutsch Holstein

Milk yield

1 0.414 0.525 0.190

2 0.251 0.354 0.195

3 0.160 0.207 0.274

Ø 0.276 0.394 0.200

SCS

1 0.412 0.386 0.391

2 0.343 0.307 0.279

3 0.417 0.402 0.266

Ø 0.401 0.402 0.307

Slide 8, February, 11,  2018



Genetic analyses:

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk 

components

TD Fleckvieh Braunvieh Deutsch Holstein

Fat content

1 0.024 -0.077 0.002

2 -0.280 -0.416 -0.262

3 -0.294 -0.460 -0.339

Ø -0.194 -0.370 -0.190

Protein content

1 -0.661 -0.765 -0.663

2 -0.665 -0.709 -0.718

3 -0.557 -0.613 -0.686

Ø -0.630 -0.680 -0.655

Fat-protein-ratio

1 0.468 0.463 0.385

2 0.152 0.108 0.187

3 0.055 -0.117 0.053

Ø 0.239 0.143 0.212

Slide 9, February, 11,  2018



Genetic analyses:

Data:

Fleckvieh: 37.846

Braunvieh: 15.771

Deutsch Holstein: 31.425

lactations with information for the first three test

day records (analysed separately or as average)

Repeatability model (within breed):

HYS, lactation number, days in milk, permanent

environmental effect, animal effect

Slide 10, February, 11,  

2018

Multitrait model (within breed):

HYS, lactation number, days in milk, animal effect



Genetic analyses:

Heritabilities of the KetoMIR index (multitrait model)

Slide 11, February, 11,  2018

1. lact. 2. lact. 3. lact.

Trait h2 h2 h2

Fleckvieh 1. TD / x. l 0.256 0.264 0.233

2. TD / x. l 0.197 0.242 0.308

3. TD / x. l 0.247 0.358 0.332

Ø / x. L. 0.278 0.353 0.364

Braunvieh 1. TD / x. l 0.176 0.155 0.171

2. TD / x. l 0.278 0.272 0.332

3. TD / x. l 0.246 0.318 0.252

Ø / x. L. 0.289 0.374 0.348

Deutsch-

Holstein

1. TD / x. l 0.292 0.254 0.201

2. TD / x. l 0.371 0.416 0.415

3. TD / x. l 0.302 0.298 0.263

Ø / x. L. 0.385 0.351 0.309



Genetic analyses:

Genetic correlations of the KetoMIR index between lactations

(multitrait model)

Slide 12, February, 11,  2018

1. to 2. lact. 1. to 3. lact. 2. to 3. lact.

Trait rg rg rg

Fleckvieh 1. TD / x. l. 0.790 0.761 0.994

2. TD / x. l. 0.978 0.967 0.966

3. TD / x. l. 0.918 0.962 0.992

Ø / x. L. 0.921 0.908 0.999

Braunvieh 1. TD / x. l. 0.515 0.556 0.877

2. TD / x. l. 0.655 0.835 0.903

3. TD / x. l. 0.935 0.932 0.973

Ø / x. L. 0.742 0.771 0.948

Deutsch-

Holstein

1. TD / x. l. 0.819 0.780 0.998

2. TD / x. l. 0.893 0.944 0.978

3. TD / x. l. 0.819 0.861 0.935

Ø / x. L. 0.836 0.858 0.985



Conclusion:

Data collecting as a matter of the routine milk analyses

Genetic background of the KetoMIR index is proven

Mixture of multitrait and repeatability models

Decision of a breeding value evaluation for the KetoMIR index

- based on a single test day record

- based on the average of several test day records

Applying random regression models to the data

Calculation of economic weights

Slide 13, February, 11,  2018



Thank you for your attention!



Genetic analyses:

Is the KetoMIR index (classes) heritable?

Fleckvieh (Dual 

purpose Simmental)

Braunvieh 

(German Brown)

Deutsch Holstein 

(German Holstein)

TD Index C3 B050 B075 TD Index C3 B050 B075 TD Index C3 B050 B075

1 0.22 0.09 0.09 0.02 1 0.23 0.11 0.09 0.02 1 0.24 0.13 0.12 0.04

2 0.22 0.04 0.05 0.01 2 0.28 0.08 0.09 0.01 2 0.28 0.12 0.12 0.02

3 0.30 0.04 0.05 0.01 3 0.34 0.11 0.11 0.01 3 0.39 0.13 0.13 0.01

Ø 0.30 0.08 0.08 0.01 Ø 0.33 0.11 0.10 0.00 Ø 0.34 0.15 0.14 0.03

Heritabilities for the KetoMIR index, catecorical and binary classes

Slide 15, February, 11,  2018



Genetic analyses:

How is the KetoMIR index genetically related to ketosis?

Genetic correlations between ketosis (clinical) and the KetoMIR index

and categorical classes

Fleckvieh Braunvieh Deutsch Holstein

TD Index C3 Index C3 Index C3

1 1.000 1.000 0.749 1.000 0.438 0.522

2 1.000 1.000 0.376 0.368 0.045 0.122

3 1.000 1.000 0.070 -0.194 0.052 -0.065

Ø 1.000 1.000 0.240 0.153 0.319 0.445

Slide 16, February, 11,  2018



Genetic analyses:

Can the KetoMIR index be used as auxiliary trait in

breeding programmes?

- Is the KetoMIR index (classes) heritable?

- How is the KetoMIR index genetically related to ketosis?

- How is the KetoMIR index genetically related to other traits of

interest?
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Genetic parameters of immune 

response estimated using 

genetically divergent lines of 

Holstein-Friesian dairy heifers

M.D. Price, M.D. Camara, J.R. Bryant, T.M. Grala, S. Meier and C.R. Burke

DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand



Background

Fertility research herd (Meier et al. 2017)

 ~540 Holstein-Friesian heifers (2015 born)

 From assortative mating of high or low fertility parents

Research aims

 Underlying physiology driving fertility differences

 New management strategies

 New traits to predict fertility (h2 = 0.03)



Immune Response (IR)

 Immunity impacts reproductive function

 Immune cells key to successful pregnancy (Fair 2015)

 Post-partum uterine recovery

 Previous IR studies:

 Heritability (h2): 0.16 to 0.64
(Mallard et al., 1983; Wagter et al., 2000; 

Hernández et al., 2006; Thompson-Crispi et al., 2012)

 Genetic Correlation (rg) with fertility: -0.19 to 0.20
(Thompson-Crispi et al., 2012)



Objectives

 Estimate genetic parameters in NZ Holstein-Friesian dairy 

cattle:

 IR (3 traits) h2 and rg

 IR rg with Breeding Worth (BW) index traits

• In NZ, BW composed of 8 traits (including fertility)

 Account for bias due to herd structure



Materials & Methods

 539 Holstein-Friesian heifers

 Born across 379 herds (June-Sept 2015)

 From assortative mating of high/low fertility BV parents

→ High & Low fertility heifer lines

 7 “Contemporary Groups” (CG)

 Pedigree of 10,992 animals

 18 generations deep



Materials & Methods

 Immunization protocol (Thompson-Crispi et al., 2012)

 Immunized at ~220 days old

 Antibody-mediated IR (AMIR)

• HEWL @ days 0 & 14

• IgG1 conc. @ days 0, 14 & 21

 Cell-mediated IR (CMIR)

• C. albicans/control @ day 21

• Log skinfold thickness ratio @ day 23

AMIR0 →

AMIR14

AMIR21

Control covariate

Response variates

CMIRc →  Control covariate

CMIRt →  Response variate



Materials & Methods

 BLUP mixed model:

y = CG + control + a + e,       y ∊ {AMIR14, AMIR21, CMIRt, nEBV}

 Univariate model → h2

 Bivariate model → rg

 Estimated Breeding Values (EBV) of BW:

 De-regressed (dEBV) by ÷ reliability (Garrick et al. 2009)

 Noise added (nEBV) from N(0,σe
2)

 100 runs with noise re-sampling → mean rg ± SE



Materials & Methods

 rg between nEBV and IR also estimated via a 

Pearson correlation

 Simple, and used as validation (no SE though)

Explored herd divergence in fertility

 Pedigree determined to be deep enough



Results & Discussion

h2

rg

rp

AMIR14 AMIR21 CMIRt

AMIR14 0.44 ± 0.14 0.67 ± 0.17 -0.44 ± 0.43

AMIR21 0.44 ± 0.04 0.47 ± 0.15 -0.07 ± 0.40

CMIRt -0.03 ± 0.05 0.01 ± 0.05 0.11 ± 0.10



AMIR14 AMIR21 CMIRt

BW trait h2 rg ± SE rg ± SE rg ± SE

Protein 0.31 -0.10 ± 0.22 -0.13 ± 0.21 -0.39 ± 0.31

Fat 0.33 -0.22 ± 0.21 -0.10 ± 0.21 -0.24 ± 0.29

Volume 0.36 -0.12 ± 0.20 -0.08 ± 0.20 -0.40 ± 0.32

Liveweight 0.35 -0.15 ± 0.17 -0.22 ± 0.17 *

Fertility 0.03 0.09 ± 0.22 -0.17 ± 0.21 -0.04 ± 0.32

SCS 0.12 0.05 ± 0.25 0.03 ± 0.25 0.10 ± 0.39

RSv 0.04 0.03 ± 0.62 -0.08 ± 0.41 0.17 ± 0.58

BCS 0.19 0.02 ± 0.19 -0.15 ± 0.18 0.19 ± 0.27

Results & Discussion



Conclusions

 IR h2 low/moderate

 AMIR & CMIR antagonistic

 Weak genetic correlations between IR & BW traits

 IR unlikely helpful as predictor trait

 Selection on IR or BW unlikely to affect each other 

• Caution however, as rg generally unfavourable still

 Widespread IR recording impractical
→ Genomic selection reference population

An IR index should have 

both AMIR & CMIR

← including for Fertility
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Materials & Methods

• rg with EBV verified by Pearson correlation

𝜎𝐼𝑅
2 × 𝜎𝐸𝐵𝑉

2

𝑐𝑜𝑣(𝜎𝐼𝑅
2 ,𝜎𝐸𝐵𝑉

2 )

– SE not available

• Accounting for fertility divergence

– If divergence between lines present in founders, and

– If fertility rg>0 with trait X, then

– Model for X req. 2 gen. distributions

─ Fertility line term (GG or fixed effect)

From IR univar
Resid. from bivar. fixed model;

σe
2 ≈ σa

2 as EBV genetic est.



Materials & Methods

• Distribution of 

A-matrix heifer 

coefficients

– Apart from sibs, both 

within- & between-line 

~0.07

– ∴ pedigree deep enough; 

1 genetic distribution ok

High-Low

Low-Low

High-High

0.07

Half-sibs



AMIR14 AMIR21 CMIRt

BW trait h2 Resampling Pearson Resampling Pearson Resampling Pearson

Protein 0.31 -0.10 ± 0.22 -0.05 -0.13 ± 0.21 -0.06 -0.39 ± 0.31 -0.05

Fat 0.33 -0.22 ± 0.21 -0.15 -0.10 ± 0.21 -0.03 -0.24 ± 0.29 0.05

Volume 0.36 -0.12 ± 0.20 0.00 -0.08 ± 0.20 0.02 -0.40 ± 0.32 -0.08

Liveweight 0.35 -0.15 ± 0.17 -0.16 -0.22 ± 0.17 -0.18 * 0.33

Fertility 0.03 0.09 ± 0.22 0.10 -0.17 ± 0.21 -0.05 -0.04 ± 0.32 -0.07

SCS 0.12 0.05 ± 0.25 -0.01 0.03 ± 0.25 -0.03 0.10 ± 0.39 0.06

RSv 0.04 0.03 ± 0.62 -0.01 -0.08 ± 0.41 -0.01 0.17 ± 0.58 0.19

BCS 0.19 0.02 ± 0.19 0.05 -0.15 ± 0.18 -0.09 0.19 ± 0.27 0.08



Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Interbull meeting 2018, New Zealand 

Improved genetic evaluation of 

health traits using metabolic 

biomarkers in Nordic dairy cattle 
E. Rius-Vilarrasa1, W.F. Fikse1, E. Carlén1, J-Å. Eriksson1, J. Pöso2, U.S. 

Nielsen3, G. P. Aamand4

1 Växa Sverige, Uppsala, Sweden 
2 Faba co-op, Vantaa, Finland
3 SEGES, Aarhus N, Denmark
4 Nordic Cattle Genetic Evaluation, Aarhus N, Denmark



Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Health traits evaluations
UDDER HEALTH

Clinical mastitis , Cell count (indicator trait)

Udder conformation (indicator traits)

CLAW HEALTH

Claw diseases (trimmers)

GENERAL HEALTH

Reproductive-, Metabolic disorders, 
Feet and Leg problems -- Clinical mastitis, 

metabolic biomarkers (BHB & Acetone indicator traits)
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GH index =   Early Reproductive Disorders (ERP) 

+ Late Reproductive Disorders  (LRP)

+ Feet & Leg Problems (FLP)

+ Ketosis (KET)

+ Other Metabolic Disorders (OMB)

General Health index
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Metabolic

Disorders

GH index =   Early Reproductive Disorders (ERP) 

+ Late Reproductive Disorders  (LRP)

+ Feet & Leg Problems (FLP)

+ Ketosis (KET)

+ Other Metabolic Disorders (OMB)

General Health index
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GH index =   Early Reproductive Disorders (ERP) 

+ Late Reproductive Disorders  (LRP)

+ Feet & Leg Problems (FLP)

+ Ketosis (KET)

+ Other Metabolic Disorders (OMB)

General Health index

Metabolic Biomarkers - New indicator traits
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Metabolic Biomarkers
Ketone bodies detectable in milk samples: 

β-hydroxybutyrate (BHB) & Acetone
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Metabolic Biomarkers
Ketone bodies detectable in milk samples: 

β-hydroxybutyrate (BHB) & Acetone

Leading to ketosis: 

Milk 
production

Energy 
demand

Feed intake

Excess
Mobilization 

of fat

Liver fails in   
handling fat

KETOSIS
Decreased

milk 
production

DIM

10-60
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Data – Disease traits

• Treatment records since the 80’s

• Veterinarians, AI technicians and Farmers

• Breeds: Holstein, Jersey and Red Dairy Cattle (RDC)

• Lactations 1-3

• Defined as binary 0/1 trait  

0 1Healthy 

non-treated 
Sick 

treated
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Data - BHB and Acetone

• Since 2013 – Denmark  

• From 2018 – Finland and Sweden

• Routine predictions from milk samples 
collected within the milk recording 
scheme – mmol/L

• Lactations 1-3
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Trait definitions

DIM

Ketosis

Other metabolic disorders 

Feet and leg problems (+ clinical mastitis)

-15 0 10 40 60 305
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Trait definitions

DIM

Ketosis

Other metabolic disorders 

Feet and leg problems (+ clinical mastitis)

Early Reproductive
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Late Reproductive disorders
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Trait definitions

DIM

Ketosis

Other metabolic disorders 

Feet and leg problems (+ clinical mastitis)

Early Reproductive

disorders
Late Reproductive disorders

BHB

Acetone

-15 0 10 40 60 305
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Model - Multi-trait multi-lactation animal model 

Fixed effects

Herd-year * country

Calving age * country  

Year-month calving * country

Random effects

Animal

Cow Permanent environmental 
effect (only BHB/Acetone)

(fixed) Regression 

Lactation stage    
(only BHB/Acetone)

Breeds and heterosis
(only HOL)

**Pre-adjustment for heterogeneous variance
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Heritabilities and genetic correlations
Holstein, lactation 1

Early 

reproductive 

disorders 

Late 

reproductive 

disorders 

Other

metabolic

disorders

Ketosis
Feet and leg 

problems

Early reproductive 

disorders 
0.020 0.40 0.40 0.29 0.35

Late reproductive 

disorders 
0.010 0.29 0.21 0.36

Other metabolic

disorders
0.006 0.74 0.38

Ketosis 0.012 0.19

Feet and leg 

problems
0.010

Low heritabilities & low, moderate to high 

genetic correlations
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Heritabilities and genetic correlations
Holstein, lactation 1

Other

metabolic

disorders

Ketosis BHB Acetone

Other 

metabolic 

disorders

0.006 0.74 0.48 0.65

Ketosis 0.012 0.65 0.76

BHB 0.15 0.88

Acetone 0.06

Low to moderate heritabilities & high genetic correlations
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Other

metabolic

disorders

Ketosis BHB Acetone

Other 

metabolic 

disorders

0.006 0.74 0.48 0.65

Ketosis 0.012 0.65 0.76

BHB 0.15 0.88

Acetone 0.06

Heritabilities and genetic correlations
Holstein, lactation 1

Low to moderate heritabilities & high genetic correlations
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Value of including BHB & acetone

Reliabilities for cows with or without BHB and 
Acetone observations, that have veterinary treatment 
observations but not own progeny

Breed BHB & 

Acetone 

obs

Other 

Metabolic

disorders

Ketosis GH index

HOL Yes 0.34 0.36 0.32

No 0.29 0.29 0.30
15% 19% 6%
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Summary
• New objective indicator traits for Ketosis in the 

General Health evaluation

• Diagnosis for subclinical and clinical ketosis
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General Health evaluation

• Diagnosis for subclinical and clinical ketosis

• Metabolic biomarkers showed favorable and high
genetic correlations with Ketosis
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Summary
• New objective indicator traits for Ketosis in the 

General Health evaluation

• Diagnosis for subclinical and clinical ketosis

• Metabolic biomarkers showed favorable and high 
genetic correlations with Ketosis

• Higher heritability of BHB and acetone than for 
Ketosis
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Summary
• New objective indicator traits for Ketosis in the 

General Health evaluation

• Diagnosis for subclinical and clinical ketosis

• Metabolic biomarkers showed favorable and high 
genetic correlations with Ketosis

• Higher heritability of BHB and acetone than for 
Ketosis

• The inclusion of the metabolic biomarkers increases 
cow EBV reliability, especially for ketosis and 
metabolic disorders
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Summary

• The new General Health evaluation was 
introduced November 2017 for all breeds 
(Holstein, RDC and Jersey)
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Early reproductive 
disorders

Late reproductive 
disorders

Ketosis
Other metabolic 

diseases
Feet and leg 

problems

 Retained 

placenta

 Hormonal 

reproductive 

disorders

 Infective 

reproductive 

disorders

 Other 

reproductive 

disorders

 Hormonal 

reproductive 

disorders

 Infective 

reproductive 

disorders

 Other 

reproductive 

disorders

• Ketosis  

• BHB

(β-hydroxybutyrate )

• Acetone

 Milk fever

 Other 

metabolic 

diseases

 Other feed 

related 

disorders

 Other 

diseases

 Feet and 

legs 

disorders

November 2017
Disease traits and sub-traits used in the 

GH evaluation 



Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Disease frequencies in % - HOLSTEIN

Traits DNK SWE FIN

ERP 12 2 3

LRP 4 8 13

KET 5 <1 2

OMB 2-9* 1-7 2-8

F&L 8 3 2

*Lactation 1 to lactation 3
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Disease frequencies in % - RDC

Traits DNK SWE FIN

ERP 8 2 3

LRP 2 6 12

KET 1-4* <1 1

OMB 1-7 1-5 1-6

F&L 7 2 2

*Lactation 1 to lactation 3



Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Disease frequencies in % - Jersey

Traits DNK

ERP 3

LRP 2-3*

KET 2-3

OMB 2-15

F&L 5-7

*Lactation 1 to lactation 3



Alternative use of Somatic Cells Counts in genetic 
selection for mastitis resistance: a new selection 

index for Italian Holstein breed

R. Finocchiaro1, G. Visentin1, M. Penasa2, J.B.C.H.M. van 
Kaam1, M. Marusi1, G. Civati1 & M. Cassandro2

1ANAFI - Italian Holstein Association
2 DAFNAE - University of Padova 

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



CONTEXT

• Mastitis is one of the major diseases in
dairy herds

• It induces economic costs for breeders
mainly due to worsening of milk yield, milk
quality and increase of health care cost

• Somatic cell count (SCC) is an indicator of
both resistance and susceptibility of cows
to intramammary infections

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



IDENTIFICATION OF MASTITIS
 DIRECT MEASURES corresponding to the diagnosis of

inflammation with a positive bacteriological examination
and observation of clinical cases

• Accurate

• Repeated and expensive tests on a large scale

 INDIRECT MEASURES linked with inflammation of the
udder

• Somatic Cell Count (SCC)

• Electrical conductivity of milk

• Cell differentiation (e.g. lymphocyte, macrophages and 
polymorphonuclear neutrophils)

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



MASTITIS RECORDING SYSTEM 

• Mastitis is not widely implemented in disease-recording
systems in many countries

• Lactation-mean SCC or test-day SCC are generally used as
indirect mastitis indicators

• Other traits derived from SCC have been suggested as
alternatives to improve/implement genetic evaluations for
mastitis resistance, such as :

• maximum SCC

• standard deviation of SCS

• SCC peaks pattern

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



WHAT HAPPENS IN THE WORLD
…INTERBULL DATA…and udder health data

• Two type of EBVs are considered by Interbull:

- Somatic cell score (SCS)

- Udder health (MAS)            as trait
when  missing same as SCS 
field

• In total 29 countries send SCS info

• Only 5 countries provide udder health (MAS) info
(Canada, Scandinavian countries, France, The
Netherlands and Italy)

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



WHAT HAPPENS IN THE WORLD

CM=clinical mastitis; SCS=Somatic Cell Score; SCM=Sub-Clinical Mastitis

Country Udder health index
h2

«Udder health index»

h2

«Clinical Mastitis»

DFS

0,25*CM11+0,25*CM12+    

0,30*CM2+0,20*CM3

6% 3 - 7%

France 0,60*SCS + 0,40*CM 15% 2%

The Netherlands 0,40*SCM+0,60*CM 9% 6%

Canada 1/3 CM1 + 1/3CM2 + 1/3 SCS 15% 3 - 5%

Italy Predicted traits for CM
15%

3%



AIM 

Setup a new Udder Health Index for Mastitis
Resistance using indicators derived from SCC

test-day

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



SCC PATTERN EXAMPLE
……It’s important to realize the trend of cells during 
lactation…

Constant  (Cow 2)                     Fluctuating (Cow 1)

0
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DATA-EDITING
• Only first parity cows (for the moment)
• Cows  with at least 3 TDscc records,
• Cows with 1st TD ≤ 60 days after calving
• Cows TDs  interval ≤ 70 days

Within lactation SCC patterns have been defined:
• L = “Low” (< 100,000 SCC/mL)
• I = “Intermediate” (100,000-400,000 SCC/mL)
• H = “High” (> 400,000 SCC/mL)

• Several samples distributed in the population were analyzed in order 
to get an idea of trend repeatability 

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



STEP 1: 
NOVEL TRAITS DEFINED TO CAPTURE DIFFERENT 
ASPECTS OF MASTITIS

TRAIT Description

SCS150 Average SCS from 5 to 150 days of lactation

SCS151-305 Average SCS from 151 to 305 days of lactation

SCSTOTAL Average SCS in the entire lactation

INFECTION
(0/1): 1 = cow with at least 1 TD identified as  I or H within

lactation

SCS_SD SCS Standard deviation within lactation

SEVERITY of infection

(%)
Ratio between  n° TD H and the total n° of TD within lactation

PEAK Presence of  peaks L-H-L or L-H-H within lactation

0 = no peaks

1 = at least one of the two peaks

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



STEP 2: VALIDATION ON REAL DATA

• Once indicators traits have been defined, these have been validated on a “robust”
sample data-set well distributed in the Italian territory with direct mastitis
information

• Those with the strongest genetic correlation with clinical mastitis have been
retained.

• The new udder health index (MST) was built following selection index theory in order
to estimate appropriate weights to combine the alternative traits in the MST
aggregate udder health index

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



RESULTS

Trait Mean SD h2 rg

Clinical mastitis 0,09 0,28 0,03

SCS150 2,58 1,37 0,06 0,39

SD_SCSt 1,20 0,62 0,02 0,44

Severity of infection 0,11 0,19 0,07 0,41

Peaks pattern 0,10 0,31 0,02 0,51

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.
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BULLS GENETIC TREND

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



CONCLUSIONS
• The new index (MST) DOES NOT REPLACE the current SCS

Index but it is a new tool to select DIRECTLY for clinical
mastitis

• This index has been published for the first time during
December 2017 evaluation with mean 100 and standard
deviation 5.

• Initially this index will be published only for national and
international bulls (no genomics).

• Currently only first parity cows

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



FUTURE PERSPECTIVES

• Pluriparous cows and Genomic evaluation  gMace

• Increase mastitis data-set 

• Use of differential cells?  Combine all new info

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.
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Breeding for resistance against Paratuberculosis: 
Genetic relation between antibody response and 
faecal shedding of MAP in dairy cattle

L.C.M. de Haer, M.F. Weber, G. de Jong

CRV and GD Animal Health; The Netherlands



What is Paratuberculosis?

Paratuberculosis is a chronic intestinal infection of 

ruminants caused by Mycobacterium avium ssp. 

Paratuberculosis (MAP).

Infections will develop slowly into:

• chronic intractable diarrhea 

• weight loss

• production losses 

• low birth weight of calves

• ultimately death since no 

treatment is available
3

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjSqqKb-KvNAhWKsxQKHbhgA54QjRwIBw&url=http%3A%2F%2Fwww.nadis.org.uk%2Fbulletins%2Fjohne%25E2%2580%2599s-disease-(paratuberculosis).aspx&psig=AFQjCNGV-3-IzZN5HB3Dl2O5ZTDQE2cvmA&ust=1466145614403207
http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjSqqKb-KvNAhWKsxQKHbhgA54QjRwIBw&url=http%3A%2F%2Fwww.nadis.org.uk%2Fbulletins%2Fjohne%25E2%2580%2599s-disease-(paratuberculosis).aspx&psig=AFQjCNGV-3-IzZN5HB3Dl2O5ZTDQE2cvmA&ust=1466145614403207


Economical importance

In The Netherlands in 2008:

47% of farms had at least one positive animal

2.4% of all animals was positive

Economical loss:

770,- euro/year per herd (50 animals) with infected cows

For every animal that develops clinical signs 

– there will be 7 to 10 animals excreting 

– there will be a further 7 to 10 infected, but not yet excreting

(possibly excreting in the future) 

4



Is breeding against Paratbc possible?

• Goal is reduction of faecal shedding of MAP

• Tool is antibody response in milk

-> Are genetic variations of antibody levels and faecal

excretion present?

-> Is a lower antibody level in milk related to less

faecal shedding?

5



Data

Causative agent of paratuberculosis: 

Mycobacterium avium ssp. Paratuberculosis (MAP)

Two data sets:

1) Individual milk samples tested by Elisa for

antibodies against MAP (trait=PA1)

2) Individual faecal samples tested for MAP bacteria

(trait=PA2)

6



Method

• Estimation of genetic parameters for PA1 and PA2

• Estimation of genetic correlation between breeding values 

for PA1 and PA2

7



Results: genetic effects

PA1 PA2

σ2
g 0.004 0.005

σ2
perm 0.033 0.021

σ2
p 0.081 0.081

repeatability 0.42 (0.003) 0.28 (0.006)

h2 0.05 (0.003) 0.06 (0.008)

Heritability and genetic variation indicate possibilities for 

selection.

9



Genetic correlation

• Genetic correlation between breeding values 

estimated with milk (PA1) and faecal (PA2) 

analyses

• Genetic correlation was estimated, accounting 

for differences in repeatability of breeding 

values (MACE)

• Sires have at least 15 daughters

• Genetic correlation PA1-PA2: 0.81
10



Implications

• Genetic standard deviation for ELISA test 

(antibody levels): 0.063

• Increase in breeding value means decrease in 

antibody levels

• Using a bull with 1 genetic standard deviation 

higher breeding value: 2.8% less daughters 

tested positive

12



T. Nguyen, J.E. Pryce, LA Monks and M.M Axford

Heat Tolerance ABV



What is heat tolerance?

Cow A

Cow B

tolerates heat 
better than

Temperature – Humidity Index (THI)



How to estimate genomic breeding value for heat tolerance?



How to estimate genomic breeding value for heat tolerance?

THI

P
ro

d
u

ct
io

n

Estimated cow slopes 
Decline in milk, fat and 
protein yields per unit 
increase in THI

Sire slope = average of daughters



Heat tolerance ABVg reliability:

Average 38% 

in Holsteins and Jerseys



Validation experiment

• 400 heifers screened

• 24 predicted most heat tolerant, 24 predicted most 

susceptible selected on GEBV

• Run through a simulated heat wave event at Ellinbank

• 4 day event, measure milk production, core 

temperature



Validation experiment

Decline in milk production

Day 1 Day 2 Day 3 Day 4 Recovery

HT -0.3 -0.3 -0.9 -2.6 -1.2

HS -0.2 -0.6 -1.1 -3.9 -2.3
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Validation experiment

Difference in intra-vaginal temperature
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Expression of heat tolerance ABVg

Decline in $

• Using 
economic 
weight of milk, 
fat and protein

Standardise

• Mean =100

• Standard 
deviation = 5



Heat tolerance ABVg

Temperature-Humidity Index

P
ro

d
u

ct
io

n

Average = 100

> 100

< 100

%

An animal with a Heat Tolerance ABV of 
105 is 5% more tolerant to hot, humid 
conditions than average. 



Genetic trend (decline ~1.5 SD in 20 years)

Holsteins Jerseys



Cool cows toolbox



Advice to farmers

• Choose bulls from the Good 
Bulls Guide

• If Heat Tolerance is important, 
select above average bulls



What did farmers say?



Trevor Parrish, New South Wales

“Now when I get a list 
of bulls I’m going to 
be looking for bulls 
which combine 
increased production 
and increased heat 
tolerance – they are 
going to be the ones 
who buck the trend.”



Ray Kitchen, Boyanup, Western Australia
“Having a Heat 
Tolerance ABV will mean 
we can breed cows with 
a greater ability to 
tolerate hot weather, be 
better suited to our 
farming environment. 

“ We will be looking for 
the bulls that pull 
together production and 
heat tolerance.”



Shane Gardiner, Mt Gambier South Australia

“Heat Tolerance is something we can 

breed in our cows for free so why not? Like 

all genetic traits, it will be permanent and 

cumulative.”



Ross Gordon, Cohuna, Victoria

“If two bulls have the 
same BPI but one has 
better heat tolerance 
than that’s the one we 
will be selecting”



Ian Scott, Nanango, Queensland

“We can send a man to 
the moon but we can’t 
control the weather so 
we need to do everything 
possible to make things 
better for the cows, 
which includes breeding 
cows with good heat 
tolerance.” 



• The Heat Tolerance ABV identifies animals with greater ability 

to tolerate hot, humid conditions with less impact on milk 

production

• Released in December 2017

• Validated in research conditions

• The Heat Tolerance ABV is unfavourably correlated with 

production but there are high Balanced Performance Index 

bulls that are also above average for Heat Tolerance

Key messages



Thank you!



Effect of heat stress on production traits of
Holstein cattle in Japan:

parameter estimation using test day records of 
first parity and genome wide markers

Y. Atagi1, A. Onogi1, T. Osawa2, T. Yasumori3, K. Adachi3, S. Yamaguchi3, M. 
Aihara3, H. Goto3, K. Togashi3 and H. Iwata1

1 The University of Tokyo, Japan

2 National Livestock Breeding Centre, Japan

3 Livestock Improvement Association of Japan, Inc., Japan



• Hokkaido, the biggest domestic dairy 
production area

• Heat stress is  minimal

From Wikipedia on 8Feb, 2018

• Heat stress affects dairy production 
in South west of Japan



Record processing
• phenotypes (Apr1987-Nov2015)

• in 233 dairy farms with genotyped cows

• genotype
• impute 20,411 cow LD records using Beagle 3

• with 50K records (2849 bulls and 2598 cows)

• farms were linked with meteorological offices based on their areas for the announcement 
of weather forecasts

• calculate Temperature-Humidity Index (THI) at meteorological offices

Td : dry bulb temperature (Celsius), RH : relative humidity (%)

• each phenotype was linked to the average (THI) up to 4 days before test day

• Heat stress
• defined as decreased production at THI > 60

     1.8 32 0.55 0.0055 1.8 26d dTHI T RH T        



Summary of records

LD genotypes: 
only cows with 
records and their 
dams to reduce 
equation size

Traits Chip used for 
genotyping

Milk, Fat and 
Protein

SCS

Test day records, n - 820,573 752,514

Cows (female with 
records)

Total 93,725 86,435
HD 807
LD* 363

- 92,555 85,265

Bulls (Sire of cows)
HD 3,126

- 2,229
Females with genotypes 
but without records

HD 1,791
LD* 1

Males other than bulls 
with genotypes

HD 2,313

Other animals in a 
pedigree

- 106,843 101,777



Random regression test day model

• : test day milk, fat, protein (kg), Somatic Cell Score

• : fixed effect of herd*test day*milking frequency

• : fixed regression coefficients of calving month

• : fixed regression coefficients of calving age

• : random regression coefficients of herd*calving year (HY) effects

• : random regression coefficients of general permanent environment (PE) effects

• : random linear regression coefficient of PE effect of heat tolerance

• : random regression coefficients of general additive genetic (AG) effects

• : random linear regression coefficient of AG effects of heat tolerance

• : random residuals at DIM: 6-35, 36-65, 66-95, 96-125, 126-215, 216-305 

•

• : Legendre polynomials 
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Covariance components

• : identity matrix

• : 2×2 matrix of (co)variances for HY effects

• :a matrix combining additive relationship and genomic relationship

• : 4×4 of (co)variances for total (general + heat tolerance ) PE and AG 
effects

• : diagonal matrix with residual variance corresponding to DIM category
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AG (co)variances and heritability
• General AG (co)variance at DIM t and t’:

• AG variance of heat tolerance:

• AG covariance and correlation between general and heat tolerance at DIM t:

• Total AG variances and heritability at DIM t and THI:
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AG / PE correlation
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• AG correlations were negative, except for SCS.
• PE correlations were negative and weaker than the AG correlations.
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Total AG variance
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• The higher the THI, the larger the total AG variances.
• Change in Fat looked different at later stage of lactation.



Total PE variance

• The higher the THI, the larger the total PE variances.
• PE variances were bigger than AG variances.
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Heritability

• h2 (Fat, Protein) were larger for higher THI.
• h2 (SCS) was smaller for higher THI due to larger difference of PE variances.
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Summary
• PE variances of heat tolerance were larger than AG variances.

 Various non-AG factors affect.

• Negative genetic correlation (general effect vs heat tolerance) should be 
considered carefully.
Use total AG effect.

• AG variances were smaller, whereas PE variances were larger than national 
genetic evaluation.
Further study is required.

• Heat stress affects more in later parities.
Later parities to be included.

• Variance components were successfully estimated. Genetic evaluation of heat 
tolerance would be feasible.



Acknowledgement

• JRA Livestock Promotion Funds for financial support.

• Mr. Masaki Oyamada, Holstein Cattle Association of Japan for 
genotype records.

• Dr Shogo Tsuruta, Yutaka Masuda (University of Georgia), and Dr Koichi 
Hagiya (Obihiro University of Agriculture and Veterinary Medicine) for 
their valuable suggestions.



Hailiang Zhang1, Wei Xu1, Aoxing Liu1,2, Xiang Li1, 

Hanpeng Luo1, Yachun Wang1

1.China Agricultural University, China

2.Aarhus University, Denmark

Genetic analysis of skinfold thickness and its association with 

body condition score, and milk production traits 

in Chinese Holstein population

Feb 11, 2018

Auckland, NZ



 Skin: the outermost structure and the largest organ of the mammals’ body, 

undertakes the many important functions

 Skinfold thickness:

 widely used to represent skin thickness

 measuring method friendly to animal 

 suitable for measurement in large population

Background

Skinfold

thickness

BCS
deposition of 

body fat （Bruckmaier al., 1998; 

Nicholson al., 1988）

Economic traits
milk yield

（Hamid al., 2000；
Kshatriya al., 2009）

Reproductive 
spermatozoa

malformation

（Siddiqui al., 2008）

Disease detection
tuberculosis

Functional traits
heat tolerance

parasitic resistance（Bonsma al., 1940；

Maiorano al., 2016 ）

 The neck and rib are the body regions 

frequently used in previous studies

 different repeatability in different regions

 different measuring difficulty in different regions



In previous studies, the factors affecting the skinfold thickness have been

explored (Dowling al., 1955; Patel al., 1958; Hayman al., 1966)

 breed, body regions, nutrition status, gender, age and measurer

Skinfold thickness is an important trait, however not been considered seriously

in dairy. Very little studies regarding genetic analysis of skinfold thickness

Background

year author species Body region No. Obs

2016 Maiorano Nellore scapula 17940 0.12 ± 0.02

1991 Slee Merino Sheep right mid-side - 0.35±0.19

 The objectives of this study were to estimate the heritability of skinfold

thickness and its genetic association with BCS and milk production traits in

Chinese Holstein



 Holstein milking cows in 9 scaled farms in Beijing

 Measurement: skinfold thickness, BCS

 skinfold thickness at the neck (STN)

 skinfold thickness at the last rib (STR)

 Device: Digital Vernier caliper

 Collecting test-day records during measuring period

Year-month No. of farms

2015, July-Aug 6

2016, June-Aug 7

Material & method

daxing

fangshan

tongzhou

changping

Measuring skinfold 

thickness at the neck 

Measuring skinfold 

thickness at the last rib
Body condition 

score (BCS)



Material & method

 Factor analysis   (SAS, GLM) 

 Genetic analysis (DMU, animal model)

 bi-variate: STN, STR

 6-traits: STN, STR, BCS, MY, FP and PP



 Descriptive statistics

Traits No. Obs MAX MIN MEAN SD CV

STN/mm 4428 1.00 13.28 7.16 1.30 18.1%

STR/mm 4452 1.07 22.77 11.76 1.97 16.7%

BCS 5810 1.00 5.00 2.90 0.79 27.4%

MY/kg 5646 0.80 90.00 34.58 10.20 29.5%

FP/% 4980 0.68 7.99 3.97 0.88 22.2%

PP/% 5544 1.53 9.33 3.01 0.30 10.1%

 Factor analysis

Traits R2 FM/FS/FY Stage Parity BCS Body side

df F-value df F-value df F-value df F-value df F-value

STN 0.39 13 205.41** 5 6.23** 4 19.49** 1 60.76**

STR 0.37 12 109.56** 5 3.18** 4 27.78** 1 71.53** 1 149.69**

Results & discussion

• The STN was thinner 

than STR

• There is a significant 

body side  effect on 

skin thickness at the 

last rib!



Results from 6-traits model

Traits No. Obs
Additive 

VC

Error 

VC

Phenotype 

VC

Heritability

±SE

STN 4307 0.13 0.90 1.03 0.13±0.03

STR 4331 0.64 1.96 2.61 0.25±0.05

BCS 5585 0.05 0.34 0.39 0.12±0.03

MY 5634 8.34 68.73 77.07 0.11±0.02

FP 4969 0.05 0.66 0.71 0.07±0.02

PP 5533 0.01 0.07 0.08 0.08±0.02

 Estimated heritabilities for

STN was higher than STR:

low to moderate

 Estimated heritability of

STN & STR are similar

between bi-variate model

and 6 traits model

 The estimated heritability

was similar with the previous

study on Nellore (Maiorano al.,

2016)

Traits No. Obs
Additive 

VC

Error

VC

Phenotype

VC

Heritability

±SE

STN 4307 0.13 0.90 1.03 0.13±0.03

STR 4331 0.63 1.97 2.60 0.24±0.04

Results from bi-variate model

Results & discussion



Genetic (below the diagonal) and phenotypic (above the diagonal) correlations

 a high genetic correlation existed between STN and STR

 a moderate and positive genetic correlation between STN and BCS (0.34)

 Low genetic correlations existed between skinfold thickness and milk

performance. rg of STN and milk production traits were higher than that between

STR and milk production traits

Traits STN STR BCS MY FP PP

STN 0.33 0.13 -0.01 0.00 -0.01 

STR 0.80±0.08 0.15 -0.05 -0.02 -0.02 

BCS 0.34±0.15 0.19±0.14 -0.21 0.03 0.09 

MY 0.13±0.16 -0.03±0.15 -0.35±0.14 -0.08 -0.16 

FP 0.13±0.20 0.04±0.18 0.17±0.19 -0.69±0.15 0.28 

PP 0.05±0.19 0.04±0.17 0.30±0.12 -0.58±0.15 0.66±0.17

Results & discussion

Results from 6-traits model



BLUE of fixed effects BLUE：best linear unbiased estimated

Results & discussion

 Roughly, skinfold thickness decreased with the increase of parity,  first drop and 

then rise with the increase of DIM

 Skinfold thickness is sensitive to change of parity and milking stage in lactating 

cows

Body side
STR

N BLUESE

Left 860 -0.830.11

Right 3074 0.000.00
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reliability>0.1 ，N=309 reliability>0.1 ，N=329

Results & discussion

 genetic trend of EBV of skinfold thickness (bulls with Rel. >0.1) 

STN STR

From 2000 to 2011

Change of EBV=0.06 mm=0.17A Change of EBV=0.14 mm=0.18A



 Skinfold thickness is a trait with a low to moderate heritability, and there is a

high genetic correlation between skinfold thicknesses on different body

regions in Holstein population

 Skinfold thickness is easy measurable trait and sensitive to change of parity

and milking stage in lactating cows

 Skinfold thickness can be considered as an additional information of BCS to

evaluate fat deposition

 Selection on skinfold thickness to improve milking cow’s ability to fight with

the negative energy balance is feasible as only weak genetic correlations

existed between skinfold thickness and milk performance

Conclusions
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Rectal

temperature

(AM)

Rectal

temperature

(PM)

longevity

Healthy 

traits

(reproduction)

Healthy 

traits

(digestion)

Healthy 

traits

(udder)

Healthy 

traits

(hoofs)

STN -0.14 -0.02 0.13 -0.14 0.01 0.03 0.06 

STR -0.11 -0.09 0.20 -0.11 0.00 -0.01 -0.02 

 Genetic correlations with other traits

(Hickman et al., 1969; Calo et al., 1973)

Discussions



Is a 35-day feeding test with 

automatic daily weighting good 

enough for evaluating beef cattle 

for feed efficiency traits?
R.A.A. Torres Junior, L.O.C. Silva, R. Favero, R.C. 

Gomes, A. Gondo, S. Tsuruta, M.V. Costa, V. Okamura, 

G.R.O. Menezes, P.R.C. Nobre, L.M Nieto









y = 1.737 x + 517.1
R² = 0.9396
SD = 7.8 kg

450

470

490

510

530

550

570

590

610

630

650

0 10 20 30 40 50 60

W
e

ig
h

t 
(k

g
)

Days on Feed

197 ± 57 weights



Standard Error of Computed Gain





Material and Methods

• 601 Nelore Bulls from 6 test batches in 2016 and 2017

• Final Weight, Average Metabolic Weight, Average Daily Gain, 
Average Daily Feed Intake, Residual Feed Intake and Feed 
Efficiency Ratio

• Total 56 days of test and First 35 days of test.

• Contemporary group included Test Batch and Herd of Origin

• Total Pedigree of 12,785 animals

• Simple animal Model with contemporary group effect and linear 
effect of age within contemporary group

• Software Gibbs2f90 and Postgibbsf90



Results and Discussion

Table 1. Correlation and their standard-errors between 35-day and 56-day test results for the 

studied traits. 

 Trait1 Phenotypic Correlation Genetic Correlation 

FW (kg) 0.974 0.976 ± 0.007 

AMW (kg) 0.992 0.993 ± 0.002 

ADG (kg d-1) 0.864 0.904 ± 0.031 

ADFI (kg d-1) 0.940 0.952 ± 0.021 

RFI (kg d-1) 0.875 0.937 ± 0.022 

FER (g kg-1) 0.800 0.879 ± 0.034 
1 FW, final weight; AMW, average metabolic weight; ADG, average daily gain; ADFI, average daily feed intake 

in dry matter basis; RFI, residual feed intake; FER, feed efficiency ratio. 



Results and Discussion

Table 2. Heritability estimates and their standard-error for 35-day and 56-day test results of 

the studied traits. 

Trait1 35-day trait 56-day trait 

FW (kg) 0.541 ± 0.089 0.538 ± 0.091 

AMW (kg) 0.561 ± 0.088 0.557 ± 0.090 

ADG (kg d-1) 0.583 ± 0.080 0.630 ± 0.075 

ADFI (kg d-1) 0.508 ± 0.090 0.533 ± 0.094 

RFI (kg d-1) 0.533 ± 0.088 0.539 ± 0.095 

FER (g kg-1) 0.603 ± 0.075 0.616 ± 0.079 
1 FW, final weight; AMW, average metabolic weight; ADG, average daily gain; ADFI, average daily feed intake 

in dry matter basis; RFI, residual feed intake; FER, feed efficiency ratio. 



Conclusion

Yes, we can reduce the test to 35 days, as the precision of
gain will be high enough to enable small decrease on genetic
gain for the feed efficiency measures (around 15%) and even
smaller changes on rankings of proven bulls.   



Thank you 
roberto.torres@embrapa.br



A novel, comprehensive genetic 

and management initiative to 

reduce the environmental impact of 

New Zealand dairy cattle.

Mark Camara, Jeremy Bryant, Peter Amer, Dorian Garrick, Talia Grala, Stewart 

Ledgard, David Chapman, Eric Kolver,  David Burger,  Mark Shepherd, Kate 

Sargeant, Bruce Thorrold

2018 Interbull Meeting, Auckland New Zealand New Zealand Animal Evaluation Limited



Government Industry Partnership



Ministry of Business Innovation & 

Employment wants impact

This programme will deliver transformational options 

for dairy and beef farmers to meet environmental 

targets by:

1. Developing genetically low nitrogen excreting animals 

2. Implementing genetic and management strategies to 

reduce nitrogen leaching 

3. Ultimately, this research partnership will reduce sector-

wide nitrate leaching by 20%



Industry growth and water quality

http://archive.stats.govt.nz/browse_for_stats/environment/environmental-reporting-series/environmental-indicators/Home/Fresh%20water/river-water-quality-nitrogen.aspx



Intense public pressure 



Central Government Response
Freshwater National Policy Statement (2014)

• Informs local governments about their responsibilities 

under Resource Management Act

• Directs regional councils to set objectives for the state of 

fresh water bodies and set limits to meet them

• Emphasizes catchment-level targets rather than specific 

on-farm practices

• Full implementation by 31 December 2025



Regionally variable nitrogen limits

• Auckland: N input limits:150kg N/ha/yr on sandy 

soils, 200kg N/ha/yr other soils

• Bay of Plenty:  Limits on N and P that can leave a 

farm property based on a 3 year “benchmark” period 

(mid-2001 to mid-2004). 

• Horizons: N limits based on farm’s land use 

capability (LUC) classification



Variation within 

regions: Canterbury

Nitrogen Baseline 2009-2013 averaged 

N Loss.

Red - from 2017 need consent and 

must be at baseline (if over 20kg 

N/ha/yr).

Orange - Baseline + 5kg N - consent 

required 2016 (if over 20kg N/ha/yr).

Blue and Green – Consent required if 

increase greater than 5kg N/ha/yr. 



Enforcement largely model-based

• OVERSEER required in Otago, Canterbury, Hawkes 

Bay and Manawatu-Whanganui; under 

consideration in Waikato and Southland

• Models use “average animal” & doesn’t handle 

farm-specific genetics.

• Data limitations → simulated farms used for 

catchment-level planning decisions



Cow urine important for nitrogen 

leaching 

Urine patches can 

have1200 kg N per 

hectare, and plants 

can’t process it all. 
(Haynes and Williams, 1993)

Di HJ, Cameron KC (2000) New 

Zealand Journal of Agricultural 

Research 43, 139-147. 



Advantages of genetic solutions

• Cumulative and permanent

• Universally applicable (assuming low GxE)

• Infinitely scalable

• No changes to infrastructure or farming practices

• Low cost to farmers once implemented

• Can be “stacked” with management solutions (e.g. 

alternative pasture plants)



Can milk urea nitrogen (MUN) 

predict urinary nitrogen (UN)?

1. Ammonia in rumen → blood plasma urea → 

passive diffusion to milk and urine (Roseler et 

al., 1993).

2. MUN routinely measured using spectrography

3. MUN and UN are phenotypically correlated in 

response to dietary [N].

4. MUN is heritable (Beatson, unpublished)



Key technology: automated urine 

sensors

Developed by AgResearch

Continuously-recorded 

individual-level data for UN, 

urine volume, and urination 

frequency in feed stalls or 

while grazing
M.Shepherd, P.Shorten, D.Costall,

K.A.Macdonald (2017) Agriculture, 

Ecosystems & Environment

236: 285-294



Research Aims

1. Genetics, genomics, physiology, and omics to enable selective 

breeding

– Quantitative genetic and genomic analyses in representative “Development 

Herds”

– Physiological and -omic comparisons of phenotypically divergent animals

– Develop new animal evaluation models

2. Validation, demonstration, and adoption to achieve national water 

quality outcomes

– Develop practical breeding strategies & economic values

– Validate mitigation strategies at the whole-farm and catchment levels

– Develop enhanced models for sensible regulation

‘Knowing is not enough; we must apply. 

Willing is not enough; we must do.’ 

- Johann Wolfgang von Goethe



Talia Grala (DairyNZ)

Transcriptome profiling of high and low nitrogen 

excreting animals under different dietary N regimes.

Dorian Garrick (Massey University/ AL Rae Center)

GWAS & GBLUP analyses using data collected in 

Development Herds.

Mark Camara (NZAEL)

BLUP genetic analysis to estimate genetic 

parameters for MUN, UN, BUN, identify trade-offs 

and select genetically extreme animals nitrogen 

partitioning and  transcriptomics

Stewart Ledgard (AgRes)

Large-scale phenotyping of nitrogen levels in milk, 

blood and urine;  urine volume, standard BW traits, and 

collection of  tissue for genotyping within NZAEL’s   

“Development Herd” platform. 

David Burger (DairyNZ)

Aggregate on-farm improvement in reduced N loss to 

catchment scale using a farm system model coupled to 

integrated catchment water quality

Mark Shepherd (AgResearch0

Modify OVERSEER model to capture the effects of 

the low nitrogen excretion genetics

Kate Sargeant (DairyNZ)

Apply a co-development approach with commercial farmers 

to: 1) design on-farm breeding strategies for region-specific 

nitrogen leaching targets, 2) implement that strategy, and 3) 

track effects on production and environmental footprint over 

time.

John Roche (DairyNZ)

2x2 factorial feeding stall experiments w/ genetically high 

and low nitrogen excreting cows fed high and low [N] 

diets

Jeremy Bryant (NZAEL)

Develop & implement AE models and breeding values

David Chapman (DairyNZ)

Quantify farm-level effects of low nitrogen genetics alone or 

in combination with other mitigations on nitrogen balance, 

nitrate leaching, greenhouse gas emissions, and 

productivity. 

Peter Amer (AbacusBio)

Develop practical breeding strategies; economic values, 

and selection indices for UN



Questions?

New Zealand Animal Evaluation Limited

Mark.Camara@dairynz.co.nz
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Validation of parents

• Over 2.2 million animals genotyped in U.S. system

• Portion of parents validated 
• 97% of sires
• 39% of dams

• Each genotype compared with all others to discover identical 
genotypes and parent-progeny relationships

• Animals with incorrect sire or dam excluded from evaluation
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Validation of grandsires

• If parent not genotyped or not confirmed, grandsire is checked

• Grandsire declared unlikely if animal and grandsire have more 
opposite homozygotes than threshold, which declines as 
possible comparisons increase

• Possible grandsires are suggested if low percentage of conflicts 
and birth date reasonable

• Animals with unlikely grandsires excluded from evaluation
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Detection of chromosomal abnormalities

• Where parent and progeny have more conflicting SNPs than 
allowed for a true parent-progeny relationship, location of 
conflicts is checked

• If conflicts are concentrated on a single chromosome, parent-
progeny relationship is accepted

• Large deletion – animal is homozygous in the region

• Uniparental disomy – heterozygous SNPs in the region

• 102 cases discovered so far
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Quality control

• Each SNP evaluated for
• Call rate
• Portion heterozygous
• Parent-progeny conflicts

• Parent-progeny conflicts assessed for all SNPs in common 
between parent and progeny genotypes 

• Trio test if both parents genotyped

• 30 chips supported 
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Computational burden

• Computer time to compare each genotype with all others 
steadily increases with number of genotype in database

• 1,000 SNPs that were on all chips used to exclude most 
unrelated animals

• Further speed-up needed
• Compare fewer SNPs
• Exclude some genotypes from comparison 
• Optimize comparison method 



Wiggans, Interbull, Feb. 2018  (7)

100 SNPs

• Selected based on call rate, MAF, and Mendelian consistency

• Measure: Conflicts/(number of both SNPs homozygous)

• Threshold of 8.4% eliminated 99.7% of genotypes without 
eliminating any confirmed parent-progeny pairs

• Test with only 50 SNPs eliminated only half the unrelated 
animal genotypes
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Compare genotypes for fewer animals

• For animals with both parents confirmed, check only recent 
genotypes (starting with births 500 days before) for identical 
genotypes

• For animals with 1 parent confirmed, skip genotypes with a 
different confirmed parent when checking for identical 
genotypes

• For grandsires, skip comparisons with bulls that have no 
progeny
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MGS checking with haplotypes

• For animals included in the evaluation, haplotypes are 
generated during imputation

• These haplotypes can be used to validate or discover MGS 
more accurately (even MGGS can be discovered)

• For MGS, identify bulls with around 45% of haplotypes in 
common and at least 15% better than next best bull 

• Discovered MGS assigned as dam’s sire if unknown
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Use haplotypes for initial MGS discovery

• Remove searching for possible MGS from initial genotype 
validation program for faster processing

• Include new animals with unknown or unlikely MGS in weekly 
evaluation calculations (confirmed sire required)

• For genotypes not qualifying for evaluation, blank conflicting 
pedigree and suppress release of evaluation 

• Continue use of current SNP comparison process for PGS
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Timing comparison 

• Time to load 1 submission of 1,967 genotypes
• Current – 51 minutes
• Eliminate 497 MGS searches – 39 minutes

• Time to run weekly MGS discovery for Holsteins – 9 minutes

• Time to run monthly MGS/MGGS discovery for Holsteins –
7 hours
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Further possible use of discovered MGS

• When dam is unknown, constructed ID necessary to store 
discovered MGS

• More complete pedigree gives better imputation

• Numerator relationship matrix (A) more similar to genomic 
relationship matrix (G)

Ayrshire Brown Swiss Guernsey Holstein Jersey

21 245 68 213,704 21,963
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Conclusions

• Rapid increase in size of genotype database requires periodic 
modification of procedures

• Checking all genotypes is desirable for correctly assigning 
animal to genotype and improving pedigree accuracy

• 100 high quality SNPs are effective in excluding most 
genotypes that are not parents or progeny

• Grandsires (even great-grandsires) can be checked and 
candidates discovered
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and employer
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Questions?



Efficient computation of base generation allele 

frequencies

11 February; Interbull meeting, Auckland, New Zealand

Michael Aldridge, Jeremie Vandenplas & Mario Calus



 Genomic prediction requires allele frequencies (AF)

 Commonly, AF are current data averages

 Theoretically, AF should be computed for the base generation

Allele frequencies in genomic prediction

2



Base generation = base generation in pedigree!

Base generation AF required for calculation of:

 Genomic relationships in (single-step) GBLUP

 Model-based reliabilities for multi-step genomic evaluations

 Computation of relationships among metafounders1

Base generation AF

3
1Legarra, A., O. F. Christensen, Z. G. Vitezica, I. Aguilar, 

and I. Misztal. 2015. Genetics. 200:455-468.



Compare accuracy and efficiency

of different methods to compute 

base generation allele frequencies

Objective

4



 AF: 𝑝 =
1

2
 𝜇

Methods – overview

5

Method Mean is estimated:

All Across all genotypes

Oldest Across oldest generation genotyped

BLUP In BLUP model

GLS General Least Squares (GLS)



 BLUP model; y = genotype (0,1,2)

 h2=0.99; allowing some genotyping error

 Univariate; or multivariate with zero genetic correlations

 Implemented using MiXBLUP

Methods - BLUP

6

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367.

Gengler, N., P. Mayeres, and M. Szydlowski. 2007. Animal. 1:21-28.



 GLS:  𝜇𝑖 = (𝟏′𝐀𝟐𝟐
−𝟏𝟏)−𝟏𝟏′𝐀𝟐𝟐

−𝟏𝐙𝑖

 Dense: Compute and invert 𝐀𝟐𝟐 Calc_grm

 Sparse: 𝐀𝟐𝟐
−𝟏𝟏 = 𝐀𝟐𝟐 − 𝐀𝟐𝟏 𝐀𝟏𝟏 −𝟏

𝐀𝟏𝟐 𝟏 Own program / Intel MKL-PARDISO

Methods – GLS (dense / sparse)

7

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367.

Garcia-Baccino, C.A., Legarra, A., Christensen, O.F., Misztal, I., Pocrnic, I., Vitezica,  

Z.G., and Cantet, R.J. 2017. Genet. Sel. Evol. 49, 34.



 Holstein-like population

 Generations 9 to 12 (after base) fully genotyped

 325,266 animals in pedigree; 100,078 genotyped

 1670 SNPs (providing replication)

 Selection: None or Strong

Data (simulation)

8



Change in AF across generations (with selection)

9Generation 1 (base)
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Results - accuracy

10

Method Without selection With selection

All 0.99 ± 0.01 0.87 ± 0.01

Oldest 0.99 ± 0.01 0.88 ± 0.01

BLUP 0.99 ± 0.01 0.96 ± 0.01

GLS_dense 0.99 ± 0.01 0.97 ± 0.01

GLS_sparse 0.99 ± 0.01 0.97 ± 0.01



=> Efficiency of GLS_sparse is very competitive!

Results - efficiency

11

Method Process time RAM

All 0-00:03:44 7.8 GB

Oldest 0-00:01:19 1.6 GB

BLUP (60 SNPs) 0-13:42:17 49.0 GB

GLS_dense 50-20:12:16 165.9 GB

GLS_sparse 0-00:01:28 2.6 GB



 Few GLS_sparse estimates outside 0-1 range:

● Only for very low MAF <0.001

● Swapping allele code solved most of those

 Estimates were not affected when having:

● 2% genotyping errors

● 25% of sires unknown

Discussion

12



 Base generation AF required for:

● Genomic relationships in (single-step) GBLUP

● Model-based reliabilities for multi-step genomic evaluations

● Computation of relationships among metafounders

 GLS_sparse estimator recommended

● Accurate & very efficient

Conclusions

13
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Tuning indirect predictions 
based on SNP effects from 

ssGBLUP

Daniela Lourenco

A. Legarra, S. Tsuruta, D. Moser, S. Miller, I. Misztal

Interbull 2018



Why Indirect predictions?

• Interim evaluations
• Between official runs

• Not all genotyped animals are in the evaluations
• Animals with incomplete pedigree increase bias and lower R2

• Commercial products
• e.g. GeneMax for non-registered animals 

2



Indirect predictions in ssGBLUP

X′X X′W

W′X W′W+𝐇−𝟏λ

 𝑏
 𝑢
=

X′y

W′y

H−1=A
−1
+
0 0

0 G
−𝟏
– A22

−1

 𝒂 = λ𝐃 𝐙′G−1 𝒖

GAPY
−1

GEBVsSNP 
effects

𝐃𝐆𝐕 = 𝐙 a

GEBVyoung = w1PA + w2DGV – w3PP

GEBVyoung ≈ DGV = 𝐙 a

Lourenco et al., 2015
3



Problems with Indirect predictions

COR( GEBV, 𝐙 a) > 0.99

Avg( GEBV) ≈ 100 Avg(𝐙 a) ≈ 0

4



Objectives

1) Fine-tune indirect predictions to be compatible with GEBV

2) Investigate whether SNP effects are accurate when APY is used

• Possibly use subset of core animals 

5



Dataset

• American Angus Association

• 8.2M animals in pedigree

• 6.2M birth weight (BW)

• 6.8M weaning weight (WW)

• 3.4M post-weaning gain (PWG)

• 81k genotyped

• born 1977-2012:   66k

• born  2013-2014:  15k

• Complete

• Phenotypes up to 2012

• Genotypes up to 2014  (81k)

• Reduced

• Phenotypes up to 2012

• Genotypes up to 2012  (66k)

• 3-trait with mat and mpe

• Results for PWG
6



Accuracy of SNP effects from 𝐆APY
−1 or 𝐆cc

−1

 𝒂𝐆 = λ𝐃 𝐙
′G−1 u

 𝒂𝐆𝒄𝒄−𝟏𝐑 = λ𝐃 𝐙
′Gcc_𝑟𝑎𝑛𝑑𝑜𝑚
−1  𝒖APY

 𝒂𝐆𝒄𝒄−𝟏𝐇 = λ𝐃 𝐙
′G𝐶𝐶_ℎ𝑖𝑔ℎ_𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
−1  𝒖APY

• Correlation between SNP effects

• Correlation between  𝐙 a 𝒂𝐆𝑨𝑷𝒀
−𝟏 𝐑 = λ𝐃 𝐙

′𝐆APY_𝑟𝑎𝑛𝑑𝑜𝑚
−1  𝒖APY

 𝒂𝐆𝑨𝑷𝒀
−𝟏 𝐇 = λ𝐃 𝐙

′𝐆APY_ℎ𝑖𝑔ℎ_𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
−1  𝒖APY
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Statistics for SNP effects

>0.99 >0.99

>0.99

G−1

𝐆APY_𝐻𝑖𝑔ℎ
−1

𝐆APY_𝑅𝑎𝑛𝑑
−1
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0.93 0.90

0.90

G−1

G𝐶𝐶_𝐻𝑖𝑔ℎ
−1

G𝐶𝐶_𝑅𝑎𝑛𝑑
−1

Statistics for SNP effects
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Statistics for 𝐙 a

0.989 0.988

0.987

G−1

G𝐶𝐶_𝐻𝑖𝑔ℎ
−1

G𝐶𝐶_𝑅𝑎𝑛𝑑
−1
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Understanding genetic and genomic bases

• Base of BLUP: founders of the pedigree

• Base of GBLUP: genotyped animals

• Base of SSGBLUP: Vitezica et al. (2011) modelled as a mean in genotyped animals

• 𝑝 𝒖𝑔 = 𝑁 𝟏𝜇, 𝐆

• 𝜇 = (Pedigree base) – (Genomic base) 

Fine-tuning indirect predictions from ssGBLUP

11



Fine-tuning indirect predictions from ssGBLUP

 𝒖𝑖𝑝=   𝜇 + 0.95𝐙 a + 0.05  𝒖𝑝𝑎𝑟𝑒𝑛𝑡𝑠1) Formula in Legarra (2017)

2) Double fitting

a) fit a regression using genotyped animals in the evaluation 

DGV𝑒𝑣𝑎𝑙 = 𝑏0 + 𝑏1𝐙 𝑎

b) apply regression for indirectly predicted animals

 𝒖𝑖𝑝= 𝑏0 + 𝑏1𝐙 𝑎

3) Add average GEBV                𝒖𝑖𝑝= 𝐺𝐸𝐵𝑉𝑒𝑣𝑎𝑙 + 𝐙 𝑎

SNP and 
pedigree 
fractions

SNP and 
pedigree 
fractions

12



Bias of indirect predictions
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Correlation         &              Regression Coefficient
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Fine-tuning indirect predictions in ssGBLUP

E 𝒖 𝒂 =  𝒖| 𝒂 = 𝜇 + 𝐙
𝟏

𝟐 𝒑(𝟏 − 𝒑)
𝐈
𝟏

𝟐 𝒑(𝟏 − 𝒑)

−𝟏

( 𝒂 − 0)

 𝒖| 𝒂 = 𝜇 + 𝐙 𝒂

 𝒖| 𝒂 = 𝐺𝐸𝐵𝑉 + 𝐙 𝒂

≈
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Final Remarks

• Indirect predictions are unbiased after corrections

• Can be used as interim evaluation

• Indirect predictions based on core animals are slightly less accurate

• Reduction in computing time (no Gnc
−1 and Gnn

−1)

• SNP effects from ssGBLUP may be useful for SNP MACE

16
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Topics

 Methods to compute genomic reliability

– Summarized by Liu et al (2017)

– GREL compared by Sullivan and Jakobsen (2014)

 Simple validation of genomic reliability 

– Do actual EBV changes agree with published REL?

– Examples from USA and Intergenomics

 Gains in reliability from more frequent updates

– Similar math can determine the value of re-estimating marker 
effects more often
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REL calculation vs. validation

 REL estimation

– Adjust theoretical REL such as from SNP-BLUP-REL or from size of 
reference population

– Use prediction error variance (PEV) because correlations are biased 
downward by selection

 REL validation

– Similar to validating EBVs using truncated data

– Examine published REL for 6 traits and Net Merit

– Examine 3 breeds (HOL, JER, BSW) on USA scale
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Genomic reliability theory

 Selection reduces variance such that Var(EBV) < REL * Var(BV), but not 
prediction error variances (PEV):

 PEV = Var(EBV – BV) = (1 – REL) Var(BV) 

 Variance of EBV differences are proportional to the difference in 
reliabilities regardless of selection. If EBV1 and EBV2 are earlier and 
later genomic evaluations with reliabilities REL1 and REL2, then

 Var(EBV2 – EBV1) = (REL2 – REL1) Var(BV)

 If REL2 is known, high, and accurate, then solve for

 REL1 = REL2 – Var(EBV2 – EBV1) / Var(BV)
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Data to validate genomic reliability

 Published genomic evaluations from April 2014

 Published genomic evaluations from April 2017

 SD of difference in genomic PTAs

 REML estimates of true TA SD from Interbull MACE

 Example for Holstein protein validation bulls:

 Average published REL1 was 0.76, REL2 was 0.95, SD of change was 8.4, 
and REML TA SD was 17.5. The observed REL1 for protein was 
calculated as

 Observed REL1 = 0.95 – (8.4)2 / (17.5)2 = 0.72
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Observed vs. published reliability, 2014

Trait Observed Published Diff Observed Published Diff

Jerseys Holsteins

Milk 73 68 +5 72 76 -4

Fat 72 68 +4 74 76 -2

Protein 71 68 +3 72 76 -4

Longevity 47 55 -8 65 70 -5

SCS 64 62 +2 77 73 +4

Preg Rate 63 52 +11 69 68 +1

NetMerit 68 64 +4 68 73 -5

Average 65 62 +3 71 73 -2
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Observed vs. published reliability, BSW

Trait Observed Published Diff Observed Published Diff

Brown Swiss - USA BSW - Intergenomics

Milk 62 63 -1 70 68 +2

Fat 64 63 +1 76 68 +8

Protein 57 63 -6 66 68 -2

Longevity 57 55 +2 63 61 +2

SCS 64 59 +6 71 66 +5

Preg Rate 56 51 +5 67 58 +9

Average 60 59 +1 69 65 +4
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Discussion of BSW results

 Same software used by USA and Intergenomics

 Same data except PA in USA vs. Pedigree Index in IG

– Bias from dam’s PTA and extra weight on PA

– Yield heritability reduced from 35% to 23% in Dec 2014

 Small test used only 41 bulls with > 50 US daughters

 Full test with all 475 IG bulls gave observed REL much more similar 
because USA and IG both have only PI for foreign MACE bulls
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Phenotypic update frequency

 Suppose reliability increases steadily from REL1 to REL2 across a year. 

 The gain in reliability from n updates per year (RELn) instead of 1 
annual update should average:

 RELn = .5 (REL2 – REL1) (n - 1) / n

 Suppose bulls increase from 75% REL1 to 91% REL2 when 4 years old 
(no daughters to many daughters). 

 Minimum gain is 0% with an annual update because the bulls would 
stay at 75% for the whole year.

 Maximum gain is 8% with instant updating. Bulls would average (75 + 
91)/2 = 83% during that year. 
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HOL NM$ average reliability by age
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Phenotypic update frequency
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Reliability gains by update frequency

Frequency Updates Young REL Marginal 
Gain

Proven REL Marginal 
Gain

Annual 1 73.0 75.0

6 months 2 73.5 0.5 79.0 4.0

4 months 3 73.7 0.2 80.3 1.3

3 months 4 73.8 0.1 81.0 0.7

2 months 6 73.83 0.03 81.6 0.6

Monthly 12 73.92 0.09 82.3 0.7

Weekly 52 73.98 0.06 82.8 0.5

Daily 365 73.99 0.01 82.97 0.17

Instant ∞ 74.0 0.01 83.0 0.03

Assuming  that REL begins at 75% and is 91% 1 year later for proven bulls
and begins at 73% and is 75% 1 year later for young bulls.
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Conclusions

 Exact calculation of genomic reliability is hard, but validation is easy

 Published USA REL averaged 2% too high for HOL, 3% too low for JER, 
and 1% too low for BSW

 Published Intergenomics REL averaged 4% too low for BSW traits 
because observed REL were higher

 Updating marker effects more frequently than 3 times per year could 
improve average REL up to 2.5% for recently proven bulls but < 0.3% 
for young animals
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REL calculation vs. validation

 REL estimation

– Adjust theoretical REL such as from SNP-BLUP-REL or from size of 
reference population

– Use prediction error variance (PEV) because correlations are biased 
downward by selection

 REL validation

– Similar to validating EBVs using truncated data

– Examine published REL for 6 traits and Net Merit

– Examine 3 breeds (HOL, JER, BSW) on USA scale
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Genomic reliability theory

 Selection reduces variance such that Var(EBV) < REL * Var(BV), but not 
prediction error variances (PEV):

 PEV = Var(EBV – BV) = (1 – REL) Var(BV) 

 Variance of EBV differences are proportional to the difference in 
reliabilities regardless of selection. If EBV1 and EBV2 are earlier and 
later genomic evaluations with reliabilities REL1 and REL2, then

 Var(EBV2 – EBV1) = (REL2 – REL1) Var(BV)

 If REL2 is known, high, and accurate, then solve for

 REL1 = REL2 – Var(EBV2 – EBV1) / Var(BV)
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Data to validate genomic reliability

 Published genomic evaluations from April 2014

 Published genomic evaluations from April 2017

 SD of difference in genomic PTAs

 REML estimates of true TA SD from Interbull MACE

 Example for Holstein protein validation bulls:

 Average published REL1 was 0.76, REL2 was 0.95, SD of change was 8.4, 
and REML TA SD was 17.5. The observed REL1 for protein was 
calculated as

 Observed REL1 = 0.95 – (8.4)2 / (17.5)2 = 0.72
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Observed vs. published reliability, 2014

Trait Observed Published Diff Observed Published Diff

Jerseys Holsteins

Milk 73 68 +5 72 76 -4

Fat 72 68 +4 74 76 -2

Protein 71 68 +3 72 76 -4

Longevity 47 55 -8 65 70 -5

SCS 64 62 +2 77 73 +4

Preg Rate 63 52 +11 69 68 +1

NetMerit 68 64 +4 68 73 -5

Average 65 62 +3 71 73 -2
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Observed vs. published reliability, BSW

Trait Observed Published Diff Observed Published Diff

Brown Swiss - USA BSW - Intergenomics

Milk 62 63 -1 70 68 +2

Fat 64 63 +1 76 68 +8

Protein 57 63 -6 66 68 -2

Longevity 57 55 +2 63 61 +2

SCS 64 59 +6 71 66 +5

Preg Rate 56 51 +5 67 58 +9

Average 60 59 +1 69 65 +4
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Discussion of BSW results

 Same software used by USA and Intergenomics

 Same data except PA in USA vs. Pedigree Index in IG

– Bias from dam’s PTA and extra weight on PA

– Yield heritability reduced from 35% to 23% in Dec 2014

 Small test used only 41 bulls with > 50 US daughters

 Full test with all 475 IG bulls gave observed REL much more similar 
because USA and IG both have only PI for foreign MACE bulls
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Phenotypic update frequency

 Suppose reliability increases steadily from REL1 to REL2 across a year. 

 The gain in reliability from n updates per year (RELn) instead of 1 
annual update should average:

 RELn = .5 (REL2 – REL1) (n - 1) / n

 Suppose bulls increase from 75% REL1 to 91% REL2 when 4 years old 
(no daughters to many daughters). 

 Minimum gain is 0% with an annual update because the bulls would 
stay at 75% for the whole year.

 Maximum gain is 8% with instant updating. Bulls would average (75 + 
91)/2 = 83% during that year. 
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HOL NM$ average reliability by age

0

10

20

30

40

50

60

70

80

90

100

<1 1 2 3 4 5 6

Bulls in AI

Females



Interbull annual meeting, Auckland, New Zealand, 2018 (11) VanRaden

Phenotypic update frequency
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Reliability gains by update frequency

Frequency Updates Young REL Marginal 
Gain

Proven REL Marginal 
Gain

Annual 1 73.0 75.0

6 months 2 73.5 0.5 79.0 4.0

4 months 3 73.7 0.2 80.3 1.3

3 months 4 73.8 0.1 81.0 0.7

2 months 6 73.83 0.03 81.6 0.6

Monthly 12 73.92 0.09 82.3 0.7

Weekly 52 73.98 0.06 82.8 0.5

Daily 365 73.99 0.01 82.97 0.17

Instant ∞ 74.0 0.01 83.0 0.03

Assuming  that REL begins at 75% and is 91% 1 year later for proven bulls
and begins at 73% and is 75% 1 year later for young bulls.
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Conclusions

 Exact calculation of genomic reliability is hard, but validation is easy

 Published USA REL averaged 2% too high for HOL, 3% too low for JER, 
and 1% too low for BSW

 Published Intergenomics REL averaged 4% too low for BSW traits 
because observed REL were higher

 Updating marker effects more frequently than 3 times per year could 
improve average REL up to 2.5% for recently proven bulls but < 0.3% 
for young animals
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1. Build SNP marker MME and invert

2. Compute reliability for the genotyped animals and adjust for 
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3. Compute reliability from using information source (IS) method:
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Method Outline



1. Compute reliability from genomics (Relg) over and above 

pedigree and propagate through the entire pedigree (without 

updating the genotyped animals): Relgg

2. Compute total reliability (Relt)

1. Genotyped animals: Combine Relg and Relug

2. Non-genotyped animals: Combine Relgg and Rela

3. If fitting an polygenic effect in the model weight Relt and Rela 

by the proportions of total genetic variance assigned to the 

marker and polygenic effect
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Multiple breeds

• New Zealand 

• Mixture of Holstein Friesian, Jersey and crossbred animals (HFxJ)

• SNP allele frequencies differ between the Holstein Friesian and Jersey 

breeds

• Potentially impact the SNP marker reliability calculations



Multiple breeds

• 7207 Sires with 3902 HF, 2356 J and 949 HFxJ

• 50k SNP panel (35k SNP)
A Matrix

HF J X HF J X

G Matrix



Multiple breeds
• Compute Z as

HF J X

G Matrix

HF J X

Breed Adjusted G Matrix



Examples

• New Zealand national population 29m animals

• Dataset 1: 35K SNP on 140K animals

• Dataset 2: 24K SNP on 70K animals (genotypes up to 2015)

• 2 Traits

• Liveweight h2= 0.35, 1.9m records

• Fertility h2= 0.025, 16.4m records

• Prediction R2 adjustment was set to 0.85



Multiple breeds

• Results of breed adjustments on SNP reliability for live weight

• Last three sire birth year cohorts with no daughters

• Similar results observed for fertility

35k SNP and 140K N

Young Sires A Matrix SNP SNP breed adjusted

Holstein Friesian 0.34 0.73 0.73

Jersey 0.37 0.80 0.77

HF x J 0.34 0.75 0.75



Multiple breeds

Adjusted

Unadjusted

Reliability

Reliability

Reliability distributions for Jersey

Unadjusted Adjusted

0.55        0.6          0.65        0.7         0.75         0.8         0.85



Computation Time

35K SNP 140K

Genotypes

24k SNP

70K Genotypes

Breed Adjustment 19m:12s 6m:16s

SNP Reliability 61m:39s 15m:40s

Reliability all 

animals
0m:58s 0m:55s

Total 81m:41s 22m:51s



Computation Time
24 Cores Simultaneously

• SNP Reliability

• Inverse of SNP equations

• Direct computation of the individual 

animal reliabilities from the SNP 

• Iterative computation of the individual 

animal reliabilities from the SNP

35k SNP

140k N 

24k SNP

70k N

4m:10s 1m:24s

44m33s 10m:17s

106m15s 29m:55s



Results Liveweight

35K SNP

140K N

24k SNP

70K N

Proven Sires

A Matrix 0.85 0.85

Genomic 0.88 0.87

Young Sires

A Matrix 0.34 0.34

Genomic 0.62 0.42



Results Fertility

35K SNP

140K N

24k SNP

70K N

Proven Sires

A Matrix 0.56 0.56

Genomic 0.61 0.62

Young Sires

A Matrix 0.28 0.28

Genomic 0.39 0.34



Conclusions

• Method is computational feasible for our national data set

• For very large numbers of genotyped animals computing in individual 

reliabilities                     from the marker model inversion may be problematic



Conclusions

• In multi-breed genomic analysis adjusting the SNPs for breed mean and 

variance appears to be useful in avoiding reliability discrepancies caused by 

breed SNP frequency differences



Conclusions

• The method provides sensible reliabilities for the examples provided for this 

talk

• The method provides a way to incorporate genomic reliabilities for non-

genotyped animals
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Integration of foreign estimates of SNP 

effects into a domestic SNPBLUP

J. Vandenplas, M.P.L. Calus, G. Gorjanc



Introduction

 Genomic evaluation

● Aim: more accurate genomic EBVs

 SNP-based evaluations under study/testing

Future: exchange of estimates of SNP effects?

How to integrate them into SNPBLUP?



Aim

Developing and testing procedures to integrate

estimates of SNP effects and measures of precision 

from a foreign SNPBLUP

into a domestic SNPBLUP



Methods – joint SNPBLUP

Phenotypes + genotypes
Domestic (D) pop.

Phenotypes + genotypes
Foreign (F) pop.

Joint SNPBLUP
D+F pop.

SNP est. + “accuracy”
D+F pop.

Joint DGV
D+F pop.

Training population

Selection candidates

Ideally!



Methods – joint SNPBLUP

𝐲𝑑

𝐲𝑓
=
𝐗𝑑 𝟎

𝟎 𝐗𝑓

𝛃𝑑

𝛃𝑓
+
𝐙𝑑𝐖𝑑

𝐙𝑓 𝐖𝑓
𝛂 +

𝐞𝑑

𝐞𝑓

𝛂~𝑀𝑉𝑁 𝟎, 𝐈𝜎𝛼𝐽
2

𝐞𝑑

𝐞𝑓
~𝑀𝑉𝑁

𝟎
𝟎
,
𝐑𝑑 𝟎
𝟎 𝐑𝑓

𝜎𝑒
2

𝐲𝑖 = vector of phenotypes

𝛃𝑖 = vector of fixed effects

𝛂𝑖 = vector of SNP effects

𝐞𝑖 = vector of residuals

𝐖𝑖 = matrix of SNP genotypes

𝐗𝑖 , 𝐙𝑖 = incidence matrices



Methods – joint SNPBLUP

Phenotypes + genotypes
Domestic (D) pop.

Phenotypes + genotypes
Foreign (F) pop.

Joint SNPBLUP
D+F pop.

SNP est. + “accuracy”
D+F pop.

Joint DGV
D+F pop.

Training population

Selection candidates

Issue: it implies sharing data!

How to replace it?



Methods – separate SNPBLUP

Phenotypes + genotypes
Domestic (D) pop.

Phenotypes + genotypes
Foreign (F) pop.

SNPBLUP
D pop. 

SNPBLUP
F pop. 

SNP est. + “accuracy”
D pop. 

SNP est.+ “accuracy”
F pop.

Separate DGV
D pop. 

Separate DGV
F pop.

Training population

Selection candidates

Own model

Own SNP variance 𝜎𝛼𝑖
2



Methods – SNPBLUP with integration

Phenotypes + genotypes
Domestic (D) pop.

Phenotypes + genotypes
Foreign (F) pop.

SNPBLUP
F pop. 

SNPBLUP with 
integration
D+F pop.

SNP est.+ “accuracy”
F pop.

SNP est. + “accuracy”
D+F pop.

DGV with integration
D+F pop.

Separate DGV
F pop.

Training population

Selection candidates

Integration



Methods –SNPBLUP with integration

 Assumptions

● Same model/variances (𝜎𝑒
2 & 𝜎𝛼𝐽

2 ) as joint SNPBLUP

● Same genotype (scaling) across all SNPBLUP



Methods –SNPBLUP with integration

𝐗𝑑
′ 𝐗𝑑 𝜎𝑒

−2 𝐗𝑑
′ 𝐙𝑑𝐖𝑑 𝜎𝑒

−2

𝐖𝑑
′𝐙𝑑
′ 𝐗𝑑 𝜎𝑒

−2 𝐖𝑑
′𝐙𝑑
′ 𝐙𝑑𝐖𝑑 𝜎𝑒

−2 + 𝑃𝐸𝐶  𝛂𝑓
−1
− 𝐈𝜎𝛼𝑓

−2 + 𝐈𝜎𝛼𝐽
−2

 𝛃𝑑
 𝛂
=

𝐗𝑑
′ 𝐲𝑑 𝜎𝑒

−2

𝐖𝑑
′𝐙𝑑
′ 𝐲𝑑 𝜎𝑒

−2 + 𝑃𝐸𝐶  𝛂𝑓
−1
 𝛂𝑓

Several ways to approximate 𝑃𝐸𝐶  𝛂𝑓
−1

𝐖𝑓
′𝐙𝑓
′𝐌𝑓 𝐙𝑓 𝐖𝑓 𝜎𝑒

−2

Least-squares part of the 

foreign SNPBLUP

𝐖𝑓
′𝐙𝑓
′𝐌𝑓 𝐲𝑓 𝜎𝑒

−2

RHS of the foreign 

SNPBLUP



Methods – approximations of 𝑃𝐸𝐶  𝛂𝑓
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1) No approximation (reference): 𝑃𝐸𝐶  𝛂𝑓
−1
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Methods – approximations of 𝑃𝐸𝐶  𝛂𝑓
−1

1) No approximation (reference): 𝑃𝐸𝐶  𝛂𝑓
−1

2) 𝑃𝐸𝐶  𝛂𝑓
−1
≈ 𝑃𝐸𝐶  𝛂𝑓 𝑤𝑖𝑡ℎ𝑖𝑛_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒

−1

3) 𝑃𝐸𝐶  𝛂𝑓
−1
≈ 𝑃𝐸𝑉  𝛂𝑓

−1

4) 𝑃𝐸𝐶  𝛂𝑓
−1
≈ 𝚲𝑓 𝑓 𝐋𝐃𝑓, 𝐩 𝚲𝑓𝜎𝑒

−2 + 𝐈𝜎𝛼𝑓
−2

p : allele frequencies in the training set

𝐋𝐃𝑓 computed from foreign selection candidates

𝚲𝑓 : effective number of records per SNP

● Estimated from 𝑃𝐸𝑉  𝛂𝑓
∗ , 𝐋𝐃𝑓, and p



Simulation

 2 Holstein-like populations

● 1 trait (h2 = 0.30 - 60K SNPs)

 Training populations

● 5,000 animals / population

● Randomly sampled from gen. 1 to 6

● Domestic: own performance records

● Foreign: pseudo-records (~DYD, DRP) + weights

 Selection candidates

● 10,000 animals from gen. 7 / population



Results – correlations

 Accurate integration

● Even with only PEV and LD information

Reference



Results – bias

Almost no bias, except for PEV

Reference



Conclusions

 Accurate integration of estimates of SNP effects

● Without exchanging genotypes/phenotypes

 Procedure similar to integration of foreign EBVs

Similar assumptions/issues/solutions

 Easy extensions

● Multiple populations, multiple traits, ...

● Special case: SNP-MACE



Thank you!


