### Applied Research into Amino Acid Nutrition

#### Phil Cardoso, DVM, MS, PhD



ILLINOIS AT URBANA- CHAMPAIGN



## So, What do we want from this cow?





We should feed and manage dry and transition cows to:
1. minimize health disorders,
2. maximize production <u>and reproduction</u>

# Net energy (NE<sub>L</sub>) requirements 2 days before and 2 days after calving

|                | 725-kg Cow |       | 570-kg Heifer |      |  |
|----------------|------------|-------|---------------|------|--|
| Units          | Pre        | Post  | Pre           | Post |  |
| Total (Mcal/d) | 14.5       | 28.8  | 14.0          | 25.1 |  |
| Typical intake | 14-17      | 19-21 |               |      |  |

Calculated from NRC (2001). Assumes milk production of 25 kg/d for cow and 20 kg/d for heifer, each containing 4% fat.



■ Required ■ Consumed ■ Lactation

Metabolizable Energy (ME; Mcal/day) required and consumed at 7 days in milk

F

From CNCPS V6 – Assumes BW 700 kg, 15.5 kg DMI, 30 kg milk 3.8% fat, 3.2% prot.; \* Percent of required; \*\* Percent of consumed

University of Illinois at Urbana-Champaign

Adapted from J.K. Drackley

#### ME and metabolizable protein (MP; g/d) required and consumed at 7 days in milk



From CNCPS V6 – Assumes BW 700 kg, 15.5 kg DMI, 30 kg milk 3.8% fat, 3.2% prot.; \* Percent of required; \*\* Percent of consumed



## What drives negative energy balance?

# Post-calving energy balance is not correlated with milk yield



wk 3 Milk yield (kg)

# Post-calving energy balance is not correlated with solids-corrected milk (SCM)



wk 3 SCM yield (kg)

# Post-calving energy balance is highly correlated with DMI



Drackley, 2006

## **Evolution of Milk Production and Reproduction in the Last 50 years**



University of Illinois at Urbana-Champaign

## Fertility and high milk production: Are they biologically compatible?

| Quartile | Milk yield<br>(kg/d) | Estrual cyclic.<br>by d 65, % | Pregnant at d<br>30 post-Al, % | Pregnant at d<br>58 post-Al, % | Pregnancy loss d<br>30 to 58, % |
|----------|----------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|
| 1        | 32.1                 | 72.7                          | 37.2                           | 30.3                           | 12.7                            |
| 2        | 39.1                 | 77.6                          | 38.9                           | 29.8                           | 11.6                            |
| 3        | 43.6                 | 77.6                          | 39.3                           | 33.7                           | 12.8                            |
| 4        | 50.0                 | 75.3                          | 37.6                           | 35.3                           | 15.6                            |
| Р        |                      | 0.002                         | 0.74                           | 0.008                          | 0.57                            |



6,396 cows on 4 TMR-fed farms in California

## **Reproduction: Early Embryonic Loss**

| Reference              | Cows  | Days 1 <sup>st</sup><br>Check | Days<br>last<br>Check | Days | Loss<br>% | Loss/<br>Day<br>% |
|------------------------|-------|-------------------------------|-----------------------|------|-----------|-------------------|
| Chebel et al., 2002a   | 195   | 28                            | 42                    | 14   | 17.9      | 1.28              |
| Moreira et al., 2000a  | 139   | 27                            | 45                    | 18   | 20.7      | 1.15              |
| Chebel et al., 2002b   | 1,503 | 31                            | 45                    | 14   | 13.2      | 0.94              |
| Stevenson et al., 2000 | 203   | 28                            | 45                    | 17   | 15.8      | 0.93              |
| Santos et al., 2002b   | 360   | 31                            | 45                    | 14   | 11.1      | 0.79              |
| Santos et al., 2002a   | 220   | 27                            | 41                    | 14   | 10        | 0.71              |
| Cerri et al., 2002     | 176   | 31                            | 45                    | 14   | 9.7       | 0.70              |
| Juchem et al., 2002    | 167   | 28                            | 39                    | 11   | 11.4      | 1.03              |

Daily embryonic loss in the first 50 days of pregnancy = 0.9%



# Reproduction is affected by events occurring earlier in lactation

| Health problem               | Pregnant at day | / 30, % <i>P</i> -value |
|------------------------------|-----------------|-------------------------|
| No clinical disease          | 66.9            |                         |
| Single clinical disease      | 56.5            | <0.01                   |
| Multiple clinical disease    | 40.8            | <0.01                   |
| No subclinical disease       | 68.0            |                         |
| Single subclinical disease   | 63.6            | 0.36                    |
| Multiple subclinical disease | 52.2            | <0.01                   |

Multiple factors affecting development of pre-antral follicles



## **Factors Affecting Pregnancy in Dairy Cows**



## **Factors Affecting Pregnancy in Dairy Cows**









#### BCS at drying off:

#### **BCS** at calving:

#### **BCS at breeding:**





\*Thin cows had greater DMI and milk production

# BCS at calving for neutral BCS change over the first 10 – 12 weeks of lactation was greater in older studies



# Thin cows before calving mobilize more protein after calving



Thin cows mobilized less body fat but had more intense muscle protein catabolism.Need more protein for thin cows?





#### BCS at drying off:

#### **BCS at calving:**

**BCS at breeding:** 



## Hoards Dairyman May 10, 2015

# "It's the change that matters"



#### It's the change that matters

A cow's body condition score at calving may not be as important as the change in body weight she experiences in early lactation.

by Phil Cardoso

UTRIENT demand for milk synthesis climbs quickly in early intake of nutrients is provided to cope with such a requirement, physiological functions like synthesis and service of hormones, immune response and embryo development may be compromised. Since milk production risos faster than dry matter intake (DMI) in the first four to six weeks after calving, cows are likely to experience negative energy balance (NEB).

CARDOSO The active is an assistant profession in the department of animal sociments at the University of Illinois.

Energy balance during late gestation is largely a factor of DMI, as the variation in energy requirements is relatively small; an exception may be cows carrying twins. Even adving, research indicates that the extens of early lactation energy balance is still more highly correlated with DMI than with milk yield. The role of excessive body condition in

transition difficulties has been studied for many years but remains a problem in many dairy herds. It is more prevalent in modern TMR-fed dairy herds, particularly with the growing reliance on corn silage as a primary forage. High serum beta-hydroxybutyrate (BHBA) and nonesterified fatty acid (NEFA) concentrations before and after calving can lower DMI, lead to hepatic lipid accumulation and ketosis, negatively affect the immune system, and can cause oxidative stress and inflammation. How about thin cows? Researchers from the French National Institute for Agricultural Research (INRA)

ik showed that cows that were thin (body condition score (BCS) less than 2.5) before calving mobilized more protein after calving than cows that were classified as fat (BCS greater than 3.75). Those cows mobilized less body fat but had more intense muscle protein catabolism. Therefore, if thin cows don't have high serum concentrations of BHIBA or NEFA, it specifies the method we are using to try to assess their sickness' is not adacuate.

#### Cows have their own target

Recommendations for optimal BCS at calving have trended downward over the last two decades. A score of about 3.0 (on a 5-point scale) represents a good goal at present. Researches from the University of Nottingham (UK) showed that, over the first 12 wooks of lactation, cows that were fat at calving lost 0.9 to 1.0 BCS units; cows that were fain at calving gained 0.4 to 0.5 BCS units (see figure). For both groups of cows, BCS tended to converge at 2.5 in Weeks 12 to 15 of lactation,

suggesting that overs 12 to 15 of lactation, suggesting that cows have a target BCS that they try to achieve and maintain. Fat cows i reached maximum DMI at Week 9, whereas thin cows reached maximum DMI at Week 9, It seems body fath ad a direct effect on DMI. If a cow's BCS is above this genetically-proing rammed target, DMI is reduced, and she loses condition; if a cow's BCS is below this target, DMI goes up, and she gains weight. Therefore, the



it seems that the theory of getting a cow to a "good condition" (BCS 3.50 to 3.75) at calving is counterproductive, as it will only reduce DMI and exacerbate NEB. We believe that more important than looking only at BCS at calving is to observe the BCS change from calving to about 12 weeks after calving.

#### Manage with nutrition

The ability of the cow to maintain a reasonable BCS change is affected by diet composition.

Our group showed that cows fod high-energy (0.72 Meal NEL/b. DM) diets during the last four weeks before calving loads during the last first six weeks postpartum than these fod controlled energy (0.60 Meal NEL/b. DM) diets (-0.43 and -0.30, respectively).

Cows fed even moderate-energy diets (0.67 to 0.72 Meal NEL/lb. DM) will easily consume 40 to 80 percent more energy than required during both the far-off and close-up periods. Allowing dry cows to consume more energy than required, even if they do not become noticeably overconditioned, results in tesponses that would be typical of overly fat cows. Because energy consumed in excess by cows must either be dissipated as heat or stored as fat, we speculate that, at least in some cows, the excess is accumulated preferentially in internal adipose tissue depots.

Our group recently demonstrated that moderate overconsumption of energy by nonlactating cows for 57 days leads to greater deposition of fat in abdominal adipose tissues deposition of fat in abdominal adipose tissues description of the state of the state of the state of the state to meet requirements. The NEPA and signaling molecules released by the visceral adipose tissues travel directly to the liver, which may cause fatty liver, subclinical ketosis and secondary problems with liver function.

The effect of BCS change on cows' fortility is also clear. Recently, researchers from the University of Wisconsin found that cows that either gained or maintained BCS that cows that to 21 days after calving that higher pregnancy rates (83.5 and 38.2 percent, respectively) per A.I. at 40 days than cows that lost BCS (25.1 percent) during that among period.

And previously, researchers from the University of Florida found that cows that had greater than 1.0 BCS unit change from calving to A.I. at approximately 70 days postpartum had lower pregnancy per A.I. (28 percent) than cows that best less than 1.0 BCS unit (37.3 percent) or did not have a BCS change (41.6 percent).

Two simple letters

Ideally, BCS would be measured in every cow in the herd every month. If that is an unachievable commitment, we recommend that farmers measure individual cow's BCS at least three times per lactation: at dry-off, calving and breeding. With these numbers in hand, you will be able to calculate BCS change and maintain the goal for a loss of no more than 0.5 to 0.75 HCS units.

The variation between individuals assigning BCS to cows can be another challenge. To make it simple, train yourself and your team the two letters of BCS: " $V^*$  and "U." This is the shape of the dip between a cow's hips and

pins. It is easy to visualize and can be used to determine when to move cows from the fresh/high pen to the next group.

If a cow has a BCS of "V." consider letting her stay a little bit longer in the freab.high group. Whenever a cow achieves a BCS of "U." she is ready to be moved to the movie of the intritional group. This strategy will most likely help your cows to achieve the right BCS at dry-off, allowing for a minimal and more ideal BCS change when she calves in again.

University of Illinois at Urbana-Champaign

May 10, 2015 333







## **Dietary Recommendations for Dry Cows**

- NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.30 Mcal/kg (0.60 Mcal/lb) DM] for mature cows
- Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 16% of DM
- NDF from forage: 40 to 50% of total DM or 4.5 to 5 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5kg).
- Total ration DM content: <55% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible, a DCAD of near zero or negative, 0.27% phosphorus, and at least 1,500 IU of vitamin E)



## Crude Fiber...

#### NDF Disappearance



| # | Almond hull variety | DM   | CF   | NDF  | ADF  | Ash |
|---|---------------------|------|------|------|------|-----|
| 7 | Cal 66%, HS 34%     | 91.3 | 22.3 | 36.5 | 25.1 | 5.9 |
| 8 | B/P 50%, HS 50%     | 87.7 | 22.2 | 33.7 | 24.6 | 5.2 |
| 9 | B/P 66%, HS 34%     | 88.3 | 21.8 | 32.4 | 23.8 | 5.5 |

• Conclusion

Breaking fiber into ADF and NDF gives better understanding of what happens to fiber.



## **Dietary Recommendations for Dry Cows**

 NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.30 Mcal/kg (0.60 Mcal/lb) DM] for mature cows



- NDF from forage: 40 to 50% of total DM or 4.5 to 5 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5kg).
- Total ration DM content: <55% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible, a DCAD of near zero or negative, 0.27% phosphorus, and at least 1,500 IU of vitamin E)

### A summary of some early lactation cow rumenprotected Lys and Met supplementation experiments

7 experiments that measured production responses to increasing Met, Lys, or both in MP *after* calving

5 experiments that measured production responses to increasing Met, or Met + Lys in MP starting *before* calving

- + 0.70 kg/d milk
- + 0.16% units milk protein
- + 79 g/d milk protein
- + 0.02% units milk fat
- + 48 g/d milk fat

+ 2.30 kg/d milk

- + 0.09% units milk protein
- + 112 g/d milk protein
- + 0.10% units milk fat
- + g/d milk fat



#### University of Illinois at Urbana-Champaign

Garthwaite et al., 1999

### **Can AA Prevent Embryonic Losses?**

### Whole Rat Embryos Require Methionine for Neural Tube Closure when Cultured on Cow Serum<sup>1-4</sup>

CAROLINE N. D. COELHO, \*†‡<sup>5</sup> JAMES A. WEBER, \*‡<sup>6</sup> NORMAN W. KLEIN, \*†‡<sup>7</sup> WILLARD G. DANIELS,§ AND THOMAS A HOAGLAND†

Center for Environmental Health,\* Department of Animal Science,† Department of Molecular and Cell Biology‡ and Department of Pathobiology,§ University of Connecticut, Storrs, CT 06269



**Culture in Rat Serum** 



**Culture in Bovine Serum** 

| Cow serum with:            | Embryo Protein                  | % Abnormal |
|----------------------------|---------------------------------|------------|
| None                       | 73.7 <u>+</u> 8.6 <sup>a</sup>  | 100%       |
| Amino acids + vitamins     | 130.0 <u>+</u> 7.7 <sup>b</sup> | 0%         |
| Amino acids                | 117.1 <u>+</u> 8.5 <sup>b</sup> | 0%         |
| Vitamins                   | 56.6 <u>+</u> 5.76 <sup>a</sup> | 100%       |
| Amino acids w/o methionine | 82.9 <u>+</u> 8.7 <sup>a</sup>  | 100%       |
| Methionine                 | 133.7 <u>+</u> 5.5 <sup>b</sup> | 0%         |

University of Illinois at Urbana-Champaign

5

## Nutritional Effects from Pre-fresh to Early Pregnancy on Embryo Development and Fertility

It is now evident that nutritional effects on oocyte quality can originate when ovarian follicles emerge from the primordial pool and become committed to growth (approx. three to four months in cows). Undernutrition at this time reduces the number of follicles that emerge and therefore the number available to ovulate. Ashworth et al. 2009





Adapted from Wiltbank et al., 2014

# Lysine concentration (µ*M*) in uterine luminal fluid of cross-bred beef heifers



n = 5 per treatment per time-point

Forde et al., 2014

# Methionine concentration (µM) in uterine luminal fluid of cross-bred beef heifers



n = 5 per treatment per time-point









# Effects of Rumen-Protected Methionine or Choline Supplementation on the First Dominant Follicle

- 72 Holstein cows entering 2<sup>nd</sup> or greater lactation
- Experimental design was a randomized block design
- Housed in tie stalls with sand bedding
- Milked 3x per day
- Fed same basal TMR to meet but not exceed 100% of the energy requirements as outlined by NRC, 2001
  - From -34 d to calving: prepartum diet
  - From 0 to 30 DIM: fresh cow diet
  - From 31 to 72 DIM: high cow diet

#### Treatments were given as top-dress
# Effects of Rumen-Protected Methionine or Choline Supplementation on the First Dominant Follicle

1. Rumen-protected methionine

(MET; n = 20, received 0.08% of the DM of the diet/d as methionine, Smartamine M<sup>®</sup>, Adisseo, Alpharetta, GA, USA, to a Lys:Met = 2.9:1)

- Rumen-protected choline (CHO; n = 17, received 60 g/d choline, Reassure, Balchem Corporation, New Hampton, NY)
- Both rumen protected methionine and choline
  (MIX; n = 19, received 0.08% of the DM of the diet/d as methionine to a Lys:Met = 2.9:1 and 60 g/d choline)
- 4. No supplementation to serve as control
   (CON; n = 16, fed TMR with a Lys:Met = 3.5:1)

| Diets |                   | Pre-Fresh<br>-21 d to calving | <b>Fresh</b><br>Calving to 30 DIM | High<br>31 to 73 DIM |
|-------|-------------------|-------------------------------|-----------------------------------|----------------------|
|       | Ingredients       |                               | % DM                              |                      |
|       | Alfalfa silage    | 8.35                          | 5.07                              | 6.12                 |
|       | Alfalfa hay       | 4.29                          | 2.98                              | 6.94                 |
|       | Corn silage       | 36.40                         | 33.41                             | 35.09                |
|       | Wheat straw       | 15.63                         | 2.98                              |                      |
|       | Cottonseed        |                               | 3.58                              | 3.26                 |
|       | Wet brewers grain | 4.29                          | 9.09                              | 8.16                 |
|       | Soy hulls         | 4.29                          | 4.18                              | 4.74                 |
|       | Blood meal        | 0.86                          | 1.50                              | 1.43                 |
|       | Concentrate mix   | 25.89                         | 37.21                             | 34.26                |



| Diets; chemical composition |                    | Pre-Fresh<br>-21 d to calving | <b>Fresh</b><br>Calving to 30 DIM | High<br>31 to 73 DIM |  |  |  |  |
|-----------------------------|--------------------|-------------------------------|-----------------------------------|----------------------|--|--|--|--|
|                             | ltem               | % DM                          |                                   |                      |  |  |  |  |
|                             | DM, %              | 47.1                          | 47.9                              | 47.1                 |  |  |  |  |
|                             | CP, % of DM        | 18.0                          | 17.6                              | 18.3                 |  |  |  |  |
|                             | ADF, % of DM       | 22.7                          | 24.4                              | 23.2                 |  |  |  |  |
|                             | NDF, % of DM       | 35.6                          | 37.3                              | 36.3                 |  |  |  |  |
|                             | Lignin, % of DM    | 4.53                          | 4.00                              | 3.80                 |  |  |  |  |
|                             | Starch, % of DM    | 22.3                          | 21.4                              | 23.6                 |  |  |  |  |
|                             | Crude fat, % of DM | 5.23                          | 4.70                              | 4.57                 |  |  |  |  |



and Components **Milk Yield** 

6<u></u>

|                       | M                  | ET                 |      |       | <i>P</i> -va | lue    |      |
|-----------------------|--------------------|--------------------|------|-------|--------------|--------|------|
| Parameter             | With               | Without            | SEM  | MET   | Parity       | Time   | M×T  |
| Milk composition (%)  |                    |                    |      |       |              |        |      |
| Fat                   | 3.72               | 3.74               | 0.11 | 0.92  | -            | <0.01  | 0.58 |
| Protein               | 3.32 <sup>a</sup>  | 3.14 <sup>b</sup>  | 0.05 | <0.01 | -            | < 0.01 | 0.67 |
| SCC                   | 1.86               | 1.81               | 0.07 | 0.55  | -            | <0.01  | 0.85 |
| Lactose               | 4.70               | 4.69               | 0.03 | 0.79  | <0.01        | <0.01  | 0.90 |
| Total solids          | 12.65              | 12.39              | 0.12 | 0.13  | -            | <0.01  | 0.24 |
| Other solids          | 5.62               | 5.60               | 0.03 | 0.58  | <0.01        | <0.01  | 0.82 |
| MUN                   | 12.80              | 12.94              | 0.30 | 0.75  | -            | 0.50   | 0.92 |
| Milk production (kg/d | ay)                |                    |      |       |              |        |      |
| Milk yield            | 44.32 <sup>a</sup> | 40.32 <sup>b</sup> | 1.29 | 0.03  | -            | <0.01  | 0.60 |
| Milk fat yield        | 1.67 <sup>a</sup>  | 1.53 <sup>b</sup>  | 0.05 | 0.04  | _            | < 0.01 | 0.47 |
| Milk protein yield    | 1.51 <sup>a</sup>  | 1.33 <sup>b</sup>  | 0.05 | <0.01 | -            | <0.01  | 0.73 |
| ECM                   | 44.81 <sup>a</sup> | 40.25 <sup>b</sup> | 1.05 | <0.01 | -            | <0.01  | 0.16 |

and Components **Milk Yield** 

6<u></u>

|                       | ME                 | ET                 |      |       | <i>P</i> -va | lue    |      |
|-----------------------|--------------------|--------------------|------|-------|--------------|--------|------|
| Parameter             | With               | Without            | SEM  | MET   | Parity       | Time   | M×T  |
| Milk composition (%)  |                    |                    |      |       |              |        |      |
| Fat                   | 3.72               | 3.74               | 0.11 | 0.92  | -            | <0.01  | 0.58 |
| Protein               | 3.32 <sup>a</sup>  | 3.14 <sup>b</sup>  | 0.05 | <0.01 | -            | <0.01  | 0.67 |
| SCC                   | 1.86               | 1.81               | 0.07 | 0.55  | -            | <0.01  | 0.85 |
| Lactose               | 4.70               | 4.69               | 0.03 | 0.79  | <0.01        | <0.01  | 0.90 |
| Total solids          | 12.65              | 12.39              | 0.12 | 0.13  | _            | <0.01  | 0.24 |
| Other solids          | 5.62               | 5.60               | 0.03 | 0.58  | <0.01        | <0.01  | 0.82 |
| MUN                   | 12.80              | 12.94              | 0.30 | 0.75  | -            | 0.50   | 0.92 |
| Milk production (kg/d | ay)                |                    |      |       |              |        |      |
| Milk yield            | 44.32 <sup>a</sup> | 40.32 <sup>b</sup> | 1.29 | 0.03  | -            | <0.01  | 0.60 |
| Milk fat yield        | 1.67 <sup>a</sup>  | 1.53 <sup>b</sup>  | 0.05 | 0.04  | -            | <0.01  | 0.47 |
| Milk protein yield    | 1.51 <sup>a</sup>  | 1.33 <sup>b</sup>  | 0.05 | <0.01 | -            | <0.01  | 0.73 |
| ECM                   | 44.81 <sup>a</sup> | 40.25 <sup>b</sup> | 1.05 | <0.01 | -            | < 0.01 | 0.16 |

#### Improved postpartal performance in dairy cows supplemented with rumen-protected methionine during the peripartal period





Effects of rumen-protected methionine and choline supplementation on steroidogenic potential of the first postpartum dominant follicle and expression of immune mediators in Holstein cows



D.A.V. Acosta <sup>a, b, e</sup>, M.I. Rivelli <sup>a</sup>, C. Skenandore <sup>a</sup>, Z. Zhou <sup>a</sup>, D.H. Keisler <sup>c</sup>, D. Luchini <sup>d</sup>, M.N. Corrêa <sup>e</sup>, F.C. Cardoso <sup>a, \*</sup>

<sup>a</sup> Department of Animal Sciences, University of Illinois, Urbana, IL, USA

<sup>b</sup> The Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia

<sup>c</sup> Division of Animal Sciences, University of Missouri, Columbia, USA

<sup>d</sup> Adisseo, Alpharetta, GA, USA

e Department of Clinics, Faculty of Veterinary Medicine, Universidade Federal de Pelotas, Pelotas, RS, Brazil





★ Blood Samples US: Ultrasonography



## **Steroidogenesis Pathway**



# Follicular Fluid AA Concentration from Cows at the Day of Follicular Aspiration of the Dominant Follicle of the 1<sup>st</sup> Follicular Wave Postpartum (~16 mm)





# Serum <u>Methionine</u> Concentration from Cows Fed rumen-protected methionine (MET) or not (CON)



Control: n = 7; Methionine: n = 10

Stella et al., unpublished

# Serum Lysine Concentration from Cows Fed rumen-protected methionine (MET) or not (CON)



Stella et al., unpublished



University of Illinois at Urbana-Champaign

6=

http://loribovinesection.blogspot.com/2013\_07\_01\_archive.html

# **Uterine Cytology**









6 I /





# Uterine Cytology – Polymorphonuclear (PMN)





## **PMN** in Uterus of Cows Fed rumen-protected methionine (MET) or not (CON)



Skenadore et al., 2017

Animal (2014), 8:s1, pp 54–63 © The Animal Consortium 2014 doi:10.1017/S1751731114000524



### Reproductive tract inflammatory disease in *postpartum* dairy cows

S. J. LeBlanc<sup>†</sup>

Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1

(Received 23 October 2013; Accepted 10 February 2014; First published online 28 March 2014)



#### Schematic Representation of Concepts of the Patterns of Immune and Inflammatory Response in Dairy Cows in the Postpartum Period



# Rumen-protected methionine improves immunometabolic status in dairy cows during the peripartal period



Day relative to calving



6<u></u>

 Theriogenology 85 (2016) 1669-1679

 Contents lists available at ScienceDirect

 Theriogenology

 Journal homepage: www.theriojournal.com

 Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in

Holstein cows

D.A.V. Acosta<sup>a,b</sup>, A.C. Denicol<sup>c,d</sup>, P. Tribulo<sup>d</sup>, M.I. Rivelli<sup>a</sup>, C. Skenandore<sup>a</sup>, Z. Zhou<sup>a</sup>, D. Luchini<sup>e</sup>, M.N. Corrêa<sup>b</sup>, P.J. Hansen<sup>d</sup>, F.C. Cardoso<sup>a,\*</sup>

<sup>a</sup> Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA

<sup>b</sup> Faculty of Veterinary Medicine, Department of Clinics, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil

<sup>c</sup> Department of Biology, Northeastern University, Boston, Massachussets, USA

<sup>d</sup> Department of Animal Science, University of Florida, Gainesville, Florida, USA

<sup>e</sup> Adisseo NACA, Alpharetta, Georgia, USA

### Effect of Methionine Supplementation from -21 DIM to 72 DIM on Lipid Accumulation of Preimplantation Embryos

Embryos (n= 37) harvested 7 d after timed AI at 63 DIM from cows fed a control diet or the control diet enriched with rumen-protected methionine.



Fluorescence intensity of Nike Red staining



## Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos

Francisco Peñagaricano<sup>1</sup>, Alex H. Souza<sup>2</sup>, Paulo D. Carvalho<sup>2</sup>, Ashley M. Driver<sup>1</sup>, Rocio Gambra<sup>1</sup>, Jenna Kropp<sup>1</sup>, Katherine S. Hackbart<sup>2</sup>, Daniel Luchini<sup>3</sup>, Randy D. Shaver<sup>2</sup>, Milo C. Wiltbank<sup>2</sup>\*, Hasan Khatib<sup>1</sup>\*

1 Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin, United States of America, 2 Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, United States of America, 3 Adisseo USA Inc., Alpharetta, Georgia, United States of America



 Table 3. Top 30 most significant genes that showed differential expression between control and methionine-rich treatment.

| OPEN & ACCESS ET         |              |                                                                                     |         |                      |                                     |
|--------------------------|--------------|-------------------------------------------------------------------------------------|---------|----------------------|-------------------------------------|
| OF EN OACCESS TH         | Gene         | Name                                                                                | log2 FC | FDR                  |                                     |
|                          | LAPTM5       | Lysosomal protein transmembrane 5                                                   | - 14.9  | 4.7×10 <sup>-9</sup> |                                     |
|                          | NKG7         | Natural killer cell group 7 sequence                                                | -13.6   | 4.4×10 <sup>-8</sup> | • •                                 |
| Effect of                | VIM          | Vimentin                                                                            | -13.8   | 1.8×10 <sup>-7</sup> | ion on the                          |
|                          | TYROBP       | TYRO protein tyrosine kinase binding protein                                        | -13.2   | 3.2×10 <sup>-6</sup> | ion on the                          |
| Transari                 | IFI6         | Interferon, alpha-inducible protein 6                                               | -12.6   | 1.5×10 <sup>-5</sup> | have                                |
| Transcri                 | CUFF.2147.1  | Novel transcript unit                                                               | -8.2    | 1.5×10 <sup>-5</sup> | IDryos                              |
|                          | LOC505451    | Olfactory receptor, family 1, subfamily J, member 2-like                            | - 13.0  | 1.5×10 <sup>-5</sup> |                                     |
|                          | SLAMF7       | Signaling lymphocyte-activating molecule family 7 family member 7                   | - 10.4  | 3.5×10 <sup>-5</sup> |                                     |
| Francisco Peña           | LOC788199    | Olfactory receptor 6C74-like                                                        | -10.4   | 7.6×10 <sup>-5</sup> | locio Gambra <sup>1</sup> ,         |
| 1                        | LCP1         | Lymphocyte cytosolic protein 1 (L-plastin)                                          | -9.9    | 1.1×10 <sup>-4</sup> |                                     |
| Jenna Kropp',            | LOC100849660 | Uncharacterized                                                                     | 11.9    | 2.2×10 <sup>-4</sup> | Wiltbank <sup>2</sup> *,            |
| Hacan Khatih 1.          | BLA-DQB      | MHC class II antigen                                                                | -11.1   | 2.2×10 <sup>-4</sup> |                                     |
|                          | SHC2         | SHC (Src homology 2 domain containing) transforming protein 2                       | -115    | 3.4×10 <sup>-4</sup> |                                     |
| 1 Department of Animal   | NT5C3        | 5'-nucleotidase, cytosolic III                                                      | -11.5   | 3.5×10 <sup>-4</sup> | - University of Wisconsin Madison   |
| T Department of Animal   | LOC510193    | Apolipoprotein L, 3-like                                                            | 7.8     | 4.3×10 <sup>-4</sup> | , oniversity of wisconsin, madison, |
| Wisconsin, United States | LOC100848815 | SLA class II histocompatibility antigen, DQ haplotype D alpha chain-like            | -11.4   | 4.3×10 <sup>-4</sup> |                                     |
|                          | CUFF.606.1   | Novel transcript unit                                                               | -5.6    | 4.3×10 <sup>-4</sup> |                                     |
|                          | LOC100850656 | Uncharacterized                                                                     | -11.2   | 4.8×10 <sup>-4</sup> |                                     |
|                          | SLC11A1      | Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 | - 10.7  | 6.9×10 <sup>-4</sup> |                                     |
|                          | LOC100852347 | Beta-defensin 10-like                                                               | -11.2   | 7.3×10 <sup>-4</sup> |                                     |
|                          | LOC100297676 | C-type lectin domain family 2 member G-like                                         | -6.8    | 9.2×10 <sup>-4</sup> |                                     |
|                          | BCL2A1       | BCL2-related protein A1                                                             | -7.1    | 1.2×10 <sup>-3</sup> |                                     |
|                          | INSR         | Insulin receptor                                                                    | -5.1    | 1.3×10 <sup>-3</sup> |                                     |
|                          | NOVA1        | Neuro-oncological ventral antigen 1                                                 | - 10.6  | 1.5×10 <sup>-3</sup> |                                     |
|                          | TBX15        | T-box 15                                                                            | -11.2   | 2.2×10 <sup>-3</sup> |                                     |
|                          | TMEM200C     | Transmembrane protein 200C                                                          | -6.6    | 2.2×10 <sup>-3</sup> |                                     |
|                          | GPNMB        | Glycoprotein (transmembrane) nmb                                                    | -7.5    | 2.3×10 <sup>-3</sup> |                                     |
|                          | ARHGAP9      | Rho GTPase activating protein 9                                                     | -5.7    | 2.7×10 <sup>-3</sup> |                                     |
| -                        | EIF4E1B      | Eukaryotic translation initiation factor 4E family member 1B                        | -113    | 3.1×10 <sup>-3</sup> |                                     |
| I Interneting of         | LOC100295170 | Protein BEX2-like                                                                   | -9.3    | 3.5×10 <sup>-3</sup> |                                     |

University of

A negative log2 Fold Change (FC) value means that the gene showed higher expression in control treatment while a positive value means that the gene showed higher expression in methionine-rich treatment. doi:10.1371/journal.pone.0072302.t003

Penagaricano et al., 2013

| 0                        | Table 3. Top 30 r | most significant genes that showed differential expression between contro           | l and methio | nine-rich treatment. |                           |
|--------------------------|-------------------|-------------------------------------------------------------------------------------|--------------|----------------------|---------------------------|
| OPEN O ACCESS Fre        | Gene              | Name                                                                                | log2 FC      | FDR                  |                           |
|                          | LAPTM5            | Lysosomal protein transmembrane 5                                                   | - 14.9       | 4.7×10 <sup>-9</sup> |                           |
|                          | NKG7              | Natural killer cell group 7 sequence                                                | - 13.6       | 4.4×10 <sup>-8</sup> |                           |
| Effort of                | VIM               | Vimentin                                                                            | - 13.8       | 1.8×10 <sup>-7</sup> | ion on the                |
| Lifect of                | TYROBP            | TYRO protein tyrosine kinase binding protein                                        | -13.2        | 3.2×10 <sup>-6</sup> | ion on the                |
| <b>T</b>                 | IFI6              | Interferon, alpha-inducible protein 6                                               | - 12.6       | 1.5×10 <sup>-5</sup> |                           |
| Transcru                 | CUFF.2147.1       | Novel transcript unit                                                               | -8.2         | 1.5×10 <sup>-5</sup> | brvos                     |
| i ansen                  | LOC505451         | Olfactory receptor, family 1, subfamily J, member 2-like                            | - 13.0       | 1.5×10 <sup>-5</sup> | 101 9 0 5                 |
|                          | SLAMF7            | Signaling lymphocyte-activating molecule family 7 family member 7                   | - 10.4       | 3.5×10 <sup>-5</sup> |                           |
| Francisco Peña           | LOC788199         | Olfactory receptor 6C74-like                                                        | -10.4        | 7.6×10 <sup>-5</sup> | tocio Gambra <sup>1</sup> |
| Trancisco Fella          | LCP1              | Lymphocyte cytosolic protein 1 (L-plastin)                                          | - 9.9        | 1.1×10 <sup>-4</sup> | locio Gambra ,            |
| lenna Kronn <sup>1</sup> | LOC100849660      | Uncharacterized                                                                     | 11.9         | 2.2×10 <sup>-4</sup> | Wiltbank <sup>2</sup> *   |
| 00100940660              | Unchara           | ectorized                                                                           |              | 11.0                 | 22-10-4                   |
| UC100849660              | Unchara           | icterized                                                                           |              | 11.9                 | 2.2×10                    |
| .OC510193                | Apolipo           | protein L, 3-like                                                                   |              | 7.8                  | 4.3×10 <sup>-4</sup>      |
|                          |                   |                                                                                     |              |                      |                           |
|                          | CUFF.606.1        | Novel transcript unit                                                               | -5.6         | 4.3×10 <sup>-4</sup> |                           |
|                          | LOC100850656      | Uncharacterized                                                                     | -11.2        | 4.8×10 <sup>-4</sup> |                           |
|                          | SLC11A1           | Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 | - 10.7       | 6.9×10 <sup>-4</sup> |                           |
|                          | LOC100852347      | Beta-defensin 10-like                                                               | -11.2        | 7.3×10 <sup>-4</sup> |                           |
|                          | LOC100297676      | C-type lectin domain family 2 member G-like                                         | -6.8         | 9.2×10 <sup>-4</sup> |                           |
|                          | BCL2A1            | BCL2-related protein A1                                                             | -7.1         | 1.2×10 <sup>-3</sup> |                           |
|                          | INSR              | Insulin receptor                                                                    | -5.1         | 1.3×10 <sup>-3</sup> |                           |
|                          | NOVA1             | Neuro-oncological ventral antigen 1                                                 | - 10.6       | 1.5×10 <sup>-3</sup> |                           |
|                          | TBX15             | T-box 15                                                                            | -11.2        | 2.2×10 <sup>-3</sup> |                           |
|                          | TMEM200C          | Transmembrane protein 200C                                                          | -6.6         | 2.2×10 <sup>-3</sup> |                           |
|                          | GPNMB             | Glycoprotein (transmembrane) nmb                                                    | -7.5         | 2.3×10 <sup>-3</sup> |                           |
|                          | ARHGAP9           | Rho GTPase activating protein 9                                                     | -5.7         | 2.7×10 <sup>-3</sup> | _                         |
|                          | EIF4E1B           | Eukaryotic translation initiation factor 4E family member 1B                        | -11.3        | 3.1×10 <sup>-3</sup> |                           |
| I Internet               | LOC100295170      | Protein BEX2-like                                                                   | - 9.3        | 3.5×10 <sup>-3</sup> |                           |
| University of            |                   |                                                                                     |              |                      |                           |

expression in methionine-rich treatment. doi:10.1371/journal.pone.0072302.t003

Penagaricano et al., 2013



Apolipoproteins are involved in the transport and metabolism of lipids, including cholesterol, and allow the binding of lipids to organelles

Methionine influences lipid metabolism in the preimplantation embryo



University of Illinois at Urbana-Champaign

Penagaricano et al., 2013

# Effect of Supplementation with Smartamine M on Reproduction of Lactating Dairy Cows

Cows were fed a basal TMR (6.9% Lys of MP and 1.87% Met of MP) from  $30 \pm 2$  to  $128 \pm 2$  DIM and assigned to two treatments:

**RPM:** Basal TMR top dressed daily with Smartamine M

**CON:** Basal diet top dressed daily with DDG



# Effect of Supplementation with Smartamine M on Reproduction of Lactating Dairy Cows

**RPM** cows were top dressed with 50 g (29 g DDG and 21 g of Smartamine M) CON cows were top dressed with 50 g of DDG









Toledo et al., unpublished

## Pregnancy Losses (%) from 28 to 61 days after AI



Toledo et al., unpublished

| Amniotic<br>vesicle<br>size | Ellipsoid<br>Volume |    |                                    |
|-----------------------------|---------------------|----|------------------------------------|
|                             | Day 33              | n  | Volume (mm <sup>3</sup> ) ± SEM    |
|                             | Primiparous         |    |                                    |
|                             | Control             | 31 | $\textbf{610.6} \pm \textbf{38.6}$ |
|                             | RPM                 | 36 | $\textbf{596.0} \pm \textbf{36.9}$ |
|                             | <i>P</i> -value     |    | 0.71                               |
|                             | Multiparous         |    |                                    |
|                             | Control             | 35 | <b>472.3</b> ± 28.6                |
|                             | RPM                 | 45 | <b>592.1</b> ± 46.0                |
|                             | <i>P</i> -value     |    | 0.05                               |
| University of Illinois a    | at Urbana-Champaign |    | Toledo et al., <i>unp</i>          |

Toledo et al., unpublished

Is Increased Embryo Lipid Composition Associated with Lower Embryonic Death in Dairy Cows?

Is *Increased* In-Utero Lysine Concentration (d 16 – 19) Associated with Lower Embryonic Death in Dairy Cows?



# Summary

- Promote high <u>DMI</u> immediately after calving.
- Rumen-protected methionine increased methionine concentration in serum and follicular fluid of dairy cows.
- The cow's pregnancy success starts during the <u>transition</u> <u>phase</u>.
- Amino acid balancing (methionine and lysine) from prefresh to confirmed pregnancy may not only improve milk production and composition, it may also <u>improve embryo</u>
   <u>quality and reduce early embryo losses</u>.

- Manage dietary ingredients for
  - Manage for adequate CP (~13% Dry & 16% Lactation)
  - Metabolizabe methionine in TMR (30 g/d Dry & 46 g/d Lactation)
    - ~ 15 g/d Dry & 20 g/d Lactation of rumen-protected methionine
  - Metabolizabe lysine in TMR (84 g/d Dry & 129 g/d Lactation)
    - ~ 26 g/d Dry & 36 g/d Lactation rumen-protected lysine
    - Balanced for the ratios: Met 2.6% MP; Lys, 7.0% MP (LYS:MET ratio of 2.8:1)
    - Methionine supply relative to energy is ~ 0.97-1.0 g/Mcal ME
    - Lysine supply relative to energy is ~ 2.72-2.78 g/Mcal ME
- Pregnancy rate > 20% (go for > 25%; conception rate at first AI > 40%)
- Embryonic death < 15% (go for < 10%)



# **THANK YOU**

#### **Phil Cardoso**

Department of Animal Sciences University of Illinois cardoso2@illinois.edu www.dairyfocus.illinois.edu

University of Illinois at Urbana-Champaign

63