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WELCOME 

 
On behalf of all the faculty of the University of Florida welcome to the 56th 
Florida dairy production conference. 
 
The Florida Dairy Production Conference started in 1964 and aims to 
create a program which brings together some of the newest research, 
innovations, recommendations, and ideas for improving the sustainability 
and profitability of the Florida dairy industry. The presented information 
provides practical take-home messages for dairy farmers and highlights 
emerging trends in the dairy industry. The conference strives to provide a 
friendly learning and sharing atmosphere with networking opportunities for 
our target audience of dairy owners and employees, allied dairy industry 
professionals, students and dairy educators that includes great 
opportunities for networking. This years conference will include aspects of 
nutrition, reproduction and calf management, as well as a dedicated 
afternoon discussing the role of heat-stress on dairy cattle production. 
 
A full synopsis of the meeting and complete proceedings including links to 
recorded presentations can be found here: 
https://animal.ifas.ufl.edu/dairy/conferences--meetings/florida-dairy-
production-conference/  
 
Regards, 
 
John Bromfield  Peter Hansen 
Geoffrey Dahl  José Santos 
Lané Haimon  Matti Moyer 
 
The Organizing Committee 

  

https://animal.ifas.ufl.edu/dairy/conferences--meetings/florida-dairy-production-conference/
https://animal.ifas.ufl.edu/dairy/conferences--meetings/florida-dairy-production-conference/


 

SCHEDULE OF EVENTS 

9:55 AM Welcome and introduction.  Saqib Mukhtar, Associate 
Dean, UF/IFAS Extension 

Lané Haimon, Chair 

10:00 AM What have we learned about feed efficiency in dairy 
cows. Jose Santos. Dept. of Animal Sciences, University 
of Florida  

10:25 AM Strategic use of ovarian data to improve pregnancy 
outcomes following timed AI. Rafael Bisinotto. Dept. 
Large Animal Clinical Sciences, University of Florida 

10:50 AM  BREAK 

11:10 AM Considering dairy calf social behavior to improve 
welfare. Emily Miller-Cushon. Dept. of Animal Sciences, 
University of Florida 

11:35 AM The impact of season and heat stress on uterine 
disease. John Bromfield. Dept. of Animal Sciences, 
University of Florida 

12:00 PM LUNCH 

Zack Seekford, Chair   

2:00 PM Making a dairy cow that is genetically more resistant 
to heat stress. Peter Hansen. Dept. of Animal Sciences, 
University of Florida 

2:40 PM Heat abatement during the pre-weaning phase: Friend 
or Foe? Ricardo Chebel, Dept. Large Animal Clinical 
Sciences, University of Florida 

3:20 PM Alleviating heat stress. Geoffrey Dahl, Dept. Animal 
Sciences, University of Florida  

4:00 PM  RECEPTION 
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What Have 
We Learned 
About Feed 
Efficiency in 
Dairy Cows

José E.P. Santos and
Mariana N. Marinho
Department of Animal Sciences

University of Florida
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Potts et al. (2017) J. Dairy Sci. 100:5400�±5410

Year 
(1970)

Year 
(1970)

Year (1970)

Based on 1400 lb cow 

Capper et al. (2009) J. Animal Sci. 87:2160

Feed Efficiency Over the Years Larger Cows, Increased Intake ....

�9 Maintenance requirements: 700 kg cow ( 1,540 lb cow )
�9NRC (2001): �y�r�r�4�ä�;�9 �T �r�ä�r�z
L �s�r�ä�{ ���…�ƒ�Ž �’�‡�” �†�ƒ�›(~ 14.5 lb of DM of a lactating cow diet)

�9NASEM (2021): �y�r�r�4�ä�;�9 �T �r�ä�s�r
L �s�u�ä�x ���…�ƒ�Ž �’�‡�” �†�ƒ�›(~ 17.8 lb of DM of a lactating cow diet)
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�9To improve the proportion of feed energy captured in milk: 

�9Increase milk production relative to maintenance (Dilution of 
maintenance ) 

�9Increase the conversion of GE to NE (Improve RFI )

Gross energy  
of feed 

Residual feed 
intake

Dilution of 
maintenance

Net energy 
of feed

Feces, gas, urine, heat for 
digesting and metabolizing 

nutrients

Energy captured 
as milk or body 

tissue

Maintenance

Nutrient Partition Residual Feed Intake

�9 Residual feed intake (RFI) is a trait that measures feed conversion efficiency 
adjusting for other factors

�9 Differs from Gross Feed Efficiency (ECM/DMI):
�9 Energy required for production, maintenance, tissue accretion/loss, and adjusted for cohort

Nehme Marinho et al. (2021) J. Dairy Sci. 104: 5493-5507

Negative RFI

Factors Affecting Feed Efficiency

�9 Simply increasing yield of ECM improves gross feed 
efficiency, but improvement decrease as intake increases

�9 Preventing diseases

�9 Diet formulation

�9 �,�P�S�U�R�Y�L�Q�J���W�K�H���D�Q�L�P�D�O�¶�V���L�Q�W�U�L�Q�V�L�F���D�E�L�O�L�W�\���W�R���X�W�L�O�L�]�H���Q�X�W�U�L�H�Q�W�V

�9Control
�9Steers received saline (no inflammation)

�9Challenge
�9Intra-tracheal challenge with 10 mL containing 1 x 109 CFU of 

Mannheimia haemolytica at hour 0

Inflammatory Disease and Nutrient 
Flux

Burciaga-Robles et al. (2009)

5 6
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Amino Acid Hepatic Flux in Steers Without (Control) or with 
(Challenge) an Intratracheal Challenge with M. haemolytica

Difference of 2.6 
moles/day �Æ~ 380 g of 

AA for a 400 kg steer

At 0.67 efficiency, this is equivalent to 
the true protein in 8 kg of milk (18 lbs) 

Burciaga-Robles PhD Dissertation (2009)

Diet Formulation

�9Meta-analysis of addition of dietary FA as Ca salts of palm FA
�933 publications

�9 Control = 3.45% FA

�9 CSPFA = 5.02% FA
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dos Santos Neto et al. (2021) J. Dairy Sci. 104:9752�±9768

Additional 80 g of 
ECM/kg DMI

Efficiency of Consumed Energy Converted 
into Milk Energy

Bach et al. (2019) J. Dairy Sci. 103:5709�±5725

51 experiments reporting milk energy outputs and net energy 
consumption in dairy cattle

Theoretical line of 1 
to 1 efficiency

Observed response showing
reduced efficiency as energy
intake increased

Materials and Methods

�9 Study 2

�9Retrospective cohort study
�9Data from 851 cows, 342 

primiparous and 509 multiparous 
cows

�9Experimental freestall barn with 
individual feeding gates

�ò�û�÷ 
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E�€�˜�š�‹�ž�–�‹�˜�•�“�‹�”�š+ e
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�����
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F �þ���
���������
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Linear model to predict DMI:

�9 Study 1

�9Retrospective cohort study
�9Data from 399 cows, 154 

primiparous and 245 multiparous 
cows

�9Experimental freestall barn with 
individual feeding gates

9 10
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Association Between RFI and Performance up to 105 DIM
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N = 393 Holsteins with daily ECM yield, DMI, BW, and BCS Nehme Marinho et al. (2021) J. Dairy Sci. 104: 5493-5507

Association Between RFI and Incidence of 
Diseases and Survival 

RFI in mid-lactation, quartiles

Item Q1 Q2 Q3 Q4 SEM P-value

Cows, n 98 98 99 98 --- ---

Somatic cell score 2.38 2.66 2.83 2.66 0.19 0.41

Retained placenta, % 12.2 13.3 11.1 14.3 3.3 0.92

Metritis, % 13.3 19.4 17.2 22.5 4.0 0.40

Mastitis, % 15.3 13.3 12.1 15.3 3.5 0.89

Displaced abomasum, % 1.0 2.0 3.0 4.1 1.5 0.60

Lameness, % 10.2 5.1 2.0 8.2 2.4 0.14

Respiratory, % 2.0 3.1 1.0 2.0 1.4 0.81

Left herd by 300d, % 10.2 13.3 5.1 9.2 2.9 0.29

Nehme Marinho et al. (2021) J. Dairy Sci. 104: 5493-5507

N = 393 Holsteins with daily ECM yield, DMI, BW, and BCS

Association Between RFI and Reproductive 
Performance

RFI in mid-lactation, quartiles

Item Q1 Q2 Q3 Q4 SEM P-value

Cows, n 212 213 213 213 --- ---

Inseminated, % 98.4 99.1 97.7 99.1 0.8 0.7

First AI

Pregnant d 74, % 31.0 30.9 30.5 26.5 3.5 0.72

Second AI

Pregnant d 74, % 38.5 29.0 27.4 17.6 4.2 <0.001

Pregnancy per AI all AI, % 31.4 30.6 31.2 24.5 2.2 0.03

Pregnant by 300 d, % 79.0 80.7 82.4 71.5 3.3 0.05

21-d cycle pregnancy rate 21.2 21.1 22.0 16.6 1.9 0.02

Nehme Marinho and Santos (2022) Front. Anim. Sci. 3:847574

N = 851 Holsteins with daily ECM yield, DMI, BW, and BCS

Relationship Between RFI and Hepatic 
Mitochondrial Respiration
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Phenotypic RFI and Total Tract Apparent 
Digestibility

Phenotypic feed efficiency

Digestibility Low Efficiency
(+RFI)

High Efficiency 
(-RFI)

SEM P-value

DM, % 74.2 75.0 0.5 0.29

OM, % 76.5 77.1 0.6 0.52

CP, % 71.1 72.6 1.0 0.31

NDF, % 44.5 44.8 1.0 0.83

Starch, % 98.8 98.5 0.2 0.29

Fat, % 82.7 82.5 0.9 0.88

Means of digestibility analyzed at 65 and 125 d in the study

PERMANOVA, P < 0.001

PCoA1, 26.9% of total variation

P
C

oA
2,

 1
2.

1%
 o

f t
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ar
ia
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n

345 
cows

75 
cows

75 
cows

Monteiro et al. (2022) In preparation

RFI and Rumen Microbiome

Phenotypic RFI and Ruminal Parameters

Phenotypic feed efficiency

Digestibility Low Efficiency
(+RFI)

High Efficiency 
(-RFI)

SEM P-value

pH 6.4 6.3 0.05 0.12

Acetate, mMol/L 68.1 72.3 1.5 0.06

Propionate, mMol/L 25.4 27.7 1.0 0.11

Butyrate, mMol/L 14.6 16.0 0.5 0.08

Total VFA, mMol/L 113.1 121.2 2.2 0.02

Ammonia N, mg/dL 7.8 8.9 0.5 0.12

Means of digestibility analyzed at 65 and 125 d in the study

Can we Select for RFI?
�9 Feed Saved (FSAV) 

�9 Includes the economic values of cow body weight composite (BWC) with residual feed intake (RFI)

�9 FSAV PTA represents the expected pounds of feed saved per lactation

�9 Formulas :
�2�6�# �(�5�#�8= �í1(�2�6�# �4�(�+) �í 151.8 (�2�6�#BWC)

BWC = (0.23 �T �O�P�=�P�Q�N�A) + (0.72 �T �O�P�N�A�J�C�P�D) + (0.08 �T �>�K�@�U �@�A�L�P�D) + (0.17 �T �N�Q�I�L �S�E�@�P�D) �í (0.47 �T �@�=�E�N�U
�B�K�N�I): each unit represents 16 kg of mature BW

�9 Example

Cow A Cow B Cow C

Weight (lb) 1500 1570 1430

BWC 0 +1.5 -1.5

Milk yield (lb/lact) 25,000 25,000 25,000

Expected DMI (lb/lact) 18,000 18,300 17,500

Actual DMI (lb/lact) 18,000 18,500 17,300

RFI (lb/lact) 0 +200 -200

Feed saved (lb/lact) 0 -428 +428

�2�6�# �(�5�#�8� ���í����-200�����í����������������-1.5) = +428 lb of feed saved per lactation

17 18

19 20
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Genetic Correlations Between Feed Saved and 
Daughter Fertility or Resistance to Metritis

r = 0.10 r = 0.26
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CL

Synchronized
ovulation

Ovulation and
Follicular emergence Luteolysis

GnRH PGF2�r GnRH AI

CL

CLCL

Individual approach
Identification of low fertility 
cohorts and cows that do not 

respond to hormonal treatments

Population approach
Systematic control of reproduction 
Proactive work with groups of cows

�X���W�Œ���P�v���v���Ç���‰���Œ�����/

CL

Synchronized
ovulation

Ovulation and
Follicular emergence Luteolysis

GnRH PGF2�r GnRH AI

CL

NPD NPD

CLCL
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Denicol et al. (2012) J. Dairy Sci. 95:1794-1806

Cerri et al. (2009) Anim. Reprod Sci. 110:56-70

www.animalimagegallery.org

30% of lactating dairy cows subjected to timed AI protocols lack a CL

(Fricke et al., 2003; Stevenson et al., 2008; Bisinotto et al., 2010)

Development of strategies for progesterone supplementation in dairy cows 

without CL during follicle growth that improve fertility reponses
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Bisinotto et al. (2013) J. Dairy Sci. 96:2214-2225 

Bisinotto et al. (2013) J. Dairy Sci. 96:2214-2225 
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�.
No CL / CL < 15 mm�ÆP/AI = 10.3%(n = 58)

CL > 15 mm �ÆP/AI = 33.2%(n = 497)

P= 0.001

Giordano et al. (2016) J. Dairy Sci. 99:2967-2978

�.

Giordano et al. (2016) J. Dairy Sci. 99:2967-2978

18.9%

�.

Giordano et al. (2016) J. Dairy Sci. 99:2967-2978
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Hernandez et al. (unpublished)
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Considering dairy calf social behavior to 
improve welfare

Emily Miller -Cushon
Associate Professor
Department of Animal Sciences, 
University of Florida 

56th Florida Dairy Production Conference 
December 1, 2022

�‡In the United States, 63% of calves were housed 
individually as of the 2014 NAHMS survey(USDA, 2016)

�‡Public perception of social housing is more positive 
(Perttu et al., 2020)

�‡Canada is moving towards requiring social housing for 
calves

https://www.nfacc.ca/codes-of-practice/dairy-cattle

Social housing for dairy calves

Social housing affects calf welfare

1Holm et al., 2002; 2Faervik et al., 2007, Miller-Cushon et al., 2016;
3Jensen et al., 1997; Costa et al., 2014;4Veissier et al., 1994

�‡Individually-housed calves will work 
for access to a social companion1

�‡Calves choose to spend more time 
with familiar social companions and 
prefer to feed socially2

�‡Reduced fear and reactivity to 
novelty in group-housed calves3

�‡Potential for long-term effects on 
social ability4

Early life experience Weaning Grouping or regrouping Future transitions

Early social experience and adaptability

1 2

3 4
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Response to novel social environments

pair-housing

individual-housing

birth 4 weeks 8 weeks

Social preference 
test

Lindner et al., 2022.  
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Effects of early social contact on behavior

pair-housing

individual-housing

birth 2 weeks

How does early life social contact 
affect adaptation to group-housing? 

Lindner et al., 2021. JDS. 104:10090-10099.  
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Lindner et al., 2021. JDS. 104:10090-10099.  

Effects of early social contact on behavior

pair-housing

individual-housing

birth 2 weeks
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5.6vs. 4.1days
SE = 0.58, P = 0.10

Days spent scouring

Lindner et al., 2021. JDS. 104:10090-10099.  

0

2

4

6

8

10

0 2 4 6 8 10 12 14

Effects of early social contact on behavior

group-housing
pair-housing

individual-housing

birth 2 weeks 4 weeks

Lindner et al., 2021. JDS. 104:10090-10099.  
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Effects of early social contact on behavior

group-housing
pair-housing

individual-housing

birth 2 weeks 4 weeks

Lindner et al., 2021. JDS. 104:10090-10099.  
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�‡Reduced feed neophobia1

�‡Social facilitation and social learning

1Costa et al., 2015. 

Social contact affects feeding behavior
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Milk feeding

Week of age
Lindner et al., 2022. 

Social contact stimulates solid feed intake

Individually-housed calves

Weaning (10 d)

Weight gain during weaning
0.32vs. 0.064kg/d (P= 0.05)

Pair-housed calves
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Treatment: P= 0.09
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Miller-Cushon and DeVries, 2016
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Social housing and post -weaning behavior

Pair-housed calves
Individually-housed calves

Miller-Cushon and DeVries, 2016
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Social housing supports development of social behavior 
and improves adaptability to novel environments

Social housing supports solid feed intake and early life 
performance

Our ongoing work is examining longer-term effects of 
social housing into lactation

Summary

Social housing supports development of social behavior 
and improves adaptability to novel environments

Social housing supports solid feed intake and early life 
performance

Our ongoing work is examining longer-term effects of 
social housing into lactation

Summary

17 18

19 20
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Social housing supports development of social behavior 
and improves adaptability to novel environments

Social housing supports solid feed intake and early life 
performance

�t�Z���š�[�•���v���Æ�š�M��

What about long-term effects? 

What can social behavior tell us? 

Summary

Lung ultrasonography to 
diagnose subclinical BRD

Location tracking 
system

Analyzing social contacts in 
healthy and sick calves

What can social behavior tell us?

@abwlab

Emily Miller -Cushon
emillerc@ufl.edu

2020-67030-31337
2019-67015-29571

Thank you!
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The impact of season and 
heat stress on uterine 

disease.

John J. Bromfield

Department of Animal Sciences 
University of Florida

FDPC
Dec 2022
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Postpartum diseases are prevalent and reduce milk

Ribeiro (2013) JDS Carvalho (2019) JDS
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Milk production is negatively affected by heat stress

105,279 records, 16,573 herds
Guinn (2019) JDS
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Reproduction is negatively affected by heat stress
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How does heat stress 
contribute to the development 

of postpartum uterine disease?

93�ƒF + 63% RH = 86 THI

65�ƒF + 55% RH = 63 THI

Incidence of metritis is increased in warmer months

2012 to 2017 (n = 3,507)
P = 0.03
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Milk yield is impacted by both metritis and warmer months

2012 to 2017 (n = 3,507)
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Elevated THI increases disease incidence

2013 to 2015 (n = 22,212)
Gernand (2019) JDS

Average THI for 5 d after calving

Mastitis Puerperal disorders Retained placenta

�x 0.02% per THI �x 0.01% per THI �x 0.01% per THI

How does heat stress in the dry period effect health?

Cool: Feb-Mar. THI 62, Max 22.5�ƒC
Heat stress: Sept. THI 77, Max 31�ƒC
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